Travelling Wave Solutions of the K(m,n) Equation with Generalized Evolution

被引:0
作者
Bruzon, M. S. [1 ]
Gandarias, M. L. [1 ]
机构
[1] Univ Cadiz, Dept Math, Cadiz 11510, Spain
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2 | 2009年 / 1168卷
关键词
Nonlinear partial differential equation; Classical Lie Symmetries; Travelling wave solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the K(m,n) equation with generalized evolution term by means of the theory of symmetry reductions of partial differential equations. We consider travelling wave reductions depending on the values of the constants. We present some explicit solutions: kinks and antikinks.
引用
收藏
页码:244 / 247
页数:4
相关论文
共 7 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[3]   Symmetry Analysis and Solutions for a Generalization of a Family of BBM Equations [J].
Bruzon, M. S. ;
Gandarias, M. L. ;
Camacho, J. C. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :81-90
[4]   Exact solutions of a generalized Boussinesq equation [J].
Bruzon, M. S. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) :894-904
[5]  
Bruzon MS, 2008, MATH COMPUT SCI ENG, P189
[6]  
BRUZON MS, NONL ANAL IN PRESS
[7]  
Olver PJ., 2000, Applications of Lie Groups to Differential Equations