Multiplicity of solutions for elliptic quasilinear equations with critical exponent on compact manifolds

被引:6
作者
Benalili, Mohammed [1 ]
Maliki, Youssef [1 ]
机构
[1] Univ Abou Bekr Belkaid Tlemcen, Fac Sci, Dept Math, Tilimsen, Algeria
关键词
Multiplicity of solutions; p-Laplacian operator; Critical Sobolev growth; SCALAR CURVATURE; CONVERGENCE;
D O I
10.1016/j.na.2009.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with some perturbation of the so-called generalized prescribed scalar. curvature type equations on compact Riemannian manifolds; these equations are nonlinear, of critical Sobolev growth, and involve the p-Laplacian. Sufficient conditions are given to have multiple positive solutions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5946 / 5960
页数:15
相关论文
共 11 条
[1]  
Ambrosetti A., 2000, Rend. Mat. Appl., V20, P167
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Generalized scalar curvature type equations on compact Riemannian manifolds [J].
Druet, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :767-788
[6]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902
[7]   EXISTENCE AND MULTIPLICITY OF NODAL SOLUTIONS FOR NONLINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
HEBEY, E ;
VAUGON, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (02) :298-318
[8]   BETTER CONSTANTS IN THE SOBOLEV EMBEDDING THEOREM AND MULTIPLICITY FOR THE NIRENBERG-YAMABE PROBLEMS [J].
HEBEY, E ;
VAUGON, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (02) :377-407
[9]  
Rauzy A, 1996, B SCI MATH, V120, P153
[10]  
RAUZY A, 1993, T AM MATH SOC, V349, P4729