The moduli space of cubic threefolds

被引:34
作者
Allcock, D [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1090/S1056-3911-02-00313-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the moduli space of cubic hypersurfaces in CP4 in the sense of geometric invariant theory. That is, we characterize the stable and semistable hypersurfaces in terms of their singularities, and determine the equivalence classes of semistable hypersurfaces under the equivalence relation of their orbit-closures meeting.
引用
收藏
页码:201 / 223
页数:23
相关论文
共 13 条
[1]   The complex hyperbolic geometry of the moduli space of cubic surfaces [J].
Allcock, D ;
Carlson, JA ;
Toledo, D .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :659-724
[2]  
Arnold V. I., 1985, Singularities of Differential Maps, V1
[3]  
Avritzer D, 1999, BOL SOC MAT MEX, V5, P281
[4]   ORBITS OF LINEAR ALGEBRAIC GROUPS [J].
BIRKES, D .
ANNALS OF MATHEMATICS, 1971, 93 (03) :459-&
[5]   CLASSIFICATION OF CUBIC SURFACES [J].
BRUCE, JW ;
WALL, CTC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (APR) :245-256
[6]  
COLLINO A, 1981, LECT NOTES MATH, V947, P209
[7]  
GRANLUND T, 1996, GNU MULTIPLE PRECISI
[8]  
Hilbert David, 1890, MATH ANN, V36, P473
[9]   ON THE STABILITY OF PENCILS OF CUBIC CURVES [J].
MIRANDA, R .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (06) :1177-1202
[10]  
Mumford D., 1994, Geometric invariant theory