The maximum number of paths of length four in a planar graph

被引:12
作者
Ghosh, Debarun [1 ]
Gyori, Ervin [1 ,2 ]
Martin, Ryan R. [3 ]
Paulos, Addisu [1 ]
Salia, Nika [1 ,2 ]
Xiao, Chuanqi [1 ]
Zamora, Oscar [1 ,4 ]
机构
[1] Cent European Univ, Budapest, Hungary
[2] Alfred Renyi Inst Math, Budapest, Hungary
[3] Iowa State Univ, Ames, IA USA
[4] Univ Costa Rica, San Jose, Costa Rica
基金
美国国家科学基金会;
关键词
Planar graph; Path; Generalized Turan number; TRIANGLES; PENTAGONS;
D O I
10.1016/j.disc.2021.112317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (n, H) denote the maximum number of copies of H in an n-vertex planar graph. The order of magnitude of f (n, P-k), where Pk is a path on k vertices, is nleft perpendiculark-1/2right perpendicular(+1). In this paper we determine the asymptotic value of f (n, P-5) and give conjectures for longer paths. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Production of 4He and 4<(He) over bar> in Pb-Pb collisions at √SNN=2.76 TeV at the LHC [J].
Acharya, S. ;
Adamova, D. ;
Adolfsson, J. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agnello, M. ;
Agrawal, N. ;
Ahammed, Z. ;
Ahn, S. U. ;
Ajoi, S. ;
Akindinov, A. ;
Al-Turany, M. ;
Alam, S. N. ;
Albuquerque, D. S. D. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfaro Molina, R. ;
Ali, Y. ;
Alici, A. ;
Alkin, A. ;
Alme, J. ;
Alt, T. ;
Altenkamper, L. ;
Altsybeev, I. ;
Alves Garcia Prado, C. ;
Andrei, C. ;
Andreou, D. ;
Andrews, H. A. ;
Andronic, A. ;
Anguelov, V. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arcelli, S. ;
Arnaldi, R. ;
Arnold, O. W. ;
Arsene, I. C. ;
Arslandok, M. ;
Audurier, B. ;
Augustinus, A. ;
Averbeck, R. ;
Azmi, M. D. ;
Badala, A. ;
Baek, Y. W. ;
Bagnasco, S. ;
Bailhache, R. ;
Bala, R. .
NUCLEAR PHYSICS A, 2018, 971 :1-20
[2]  
Alon N., 1984, N HOLLAND MATH STUD, V87
[3]   Many T copies in H-free graphs [J].
Alon, Noga ;
Shikhelman, Clara .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 :146-172
[4]   Pentagons vs. triangles [J].
Bollobas, Bela ;
Gyori, Ervin .
DISCRETE MATHEMATICS, 2008, 308 (19) :4332-4336
[5]  
ERDOS P, 1962, PUBL MATH I HUNG, V7, P459
[6]   A note on the maximum number of triangles in a C5-free graph [J].
Ergemlidze, Beka ;
Methuku, Abhishek ;
Salia, Nika ;
Gyori, Ervin .
JOURNAL OF GRAPH THEORY, 2019, 90 (03) :227-230
[7]   On 3-uniform hypergraphs without a cycle of a given length [J].
Furedi, Zoltan ;
Ozkahya, Lale .
DISCRETE APPLIED MATHEMATICS, 2017, 216 :582-588
[8]   Generalized Turan problems for even cycles [J].
Gerbner, Daniel ;
Gyori, Ervin ;
Methuku, Abhishek ;
Vizer, Mate .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 :169-213
[9]   A Generalized Turan Problem and its Applications [J].
Gishboliner, Lior ;
Shapira, Asaf .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (11) :3417-3452
[10]   On the maximum number of five-cycles in a triangle-free graph [J].
Grzesik, Andrzej .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (05) :1061-1066