Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

被引:68
作者
Banerjee, Amartya S. [1 ]
Suryanarayana, Phanish [2 ]
Pask, John E. [3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
[3] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; FIXED-POINT ITERATIONS; ANDERSON ACCELERATION; LINEAR-SYSTEMS; SCHEME; SEQUENCES; EQUATIONS;
D O I
10.1016/j.cplett.2016.01.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. We demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 40 条
[1]   ITERATIVE PROCEDURES FOR NONLINEAR INTEGRAL EQUATIONS [J].
ANDERSON, DG .
JOURNAL OF THE ACM, 1965, 12 (04) :547-&
[2]   Preconditioning of self-consistent-field cycles in density-functional theory: The extrapolar method [J].
Anglade, P. -M. ;
Gonze, X. .
PHYSICAL REVIEW B, 2008, 78 (04)
[3]  
[Anonymous], 2001, NUMERICAL METHODS EN
[4]  
[Anonymous], 2011, NUMERICAL ANAL PARTI
[5]  
[Anonymous], 2010, NUMERICAL MATH
[6]   The SIESTA method;: developments and applicability [J].
Artacho, Emilio ;
Anglada, E. ;
Dieguez, O. ;
Gale, J. D. ;
Garcia, A. ;
Junquera, J. ;
Martin, R. M. ;
Ordejon, P. ;
Pruneda, J. M. ;
Sanchez-Portal, D. ;
Soler, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
[7]   A spectral scheme for Kohn-Sham density functional theory of clusters [J].
Banerjee, Amartya S. ;
Elliott, Ryan S. ;
James, Richard D. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 287 :226-253
[8]   NEW APPROACH FOR SOLVING THE DENSITY-FUNCTIONAL SELF-CONSISTENT-FIELD PROBLEM [J].
BENDT, P ;
ZUNGER, A .
PHYSICAL REVIEW B, 1982, 26 (06) :3114-3137
[9]   An efficient and robust technique for achieving self consistency in electronic structure calculations [J].
Bowler, DR ;
Gillan, MJ .
CHEMICAL PHYSICS LETTERS, 2000, 325 (04) :473-476
[10]  
Broyden Charles G, 1965, Math. Comput.