A Cartan-Hadamard type result for relatively hyperbolic groups

被引:2
作者
Coulon, Remi [1 ]
Hull, Michael [2 ]
Kent, Curtis [3 ]
机构
[1] Univ Rennes 1, CNRS, IRMAR, Batiment 22 & 23,263 Ave Gen Leclerc,CS 74205, F-35042 Rennes, France
[2] Univ Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA
[3] NYU, Courant Inst Math, Room 1003,251 Mercer St, New York, NY 10012 USA
关键词
Relatively hyperbolic; Asymptotic cones; Tree-graded spaces; TREE-GRADED SPACES; LIMIT GROUPS; GEOMETRY;
D O I
10.1007/s10711-015-0105-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove that if a finitely presented group has an asymptotic cone which is tree-graded with respect to a precise set of pieces then it is relatively hyperbolic. This answers a question of Mark Sapir and generalizes a result of Kapovich and Kleiner to relatively hyperbolic groups.
引用
收藏
页码:339 / 371
页数:33
相关论文
共 42 条
  • [1] An obstruction to the strong relative hyperbolicity of a group
    Anderson, James W.
    Aramayona, Javier
    Shackleton, Kenneth J.
    [J]. JOURNAL OF GROUP THEORY, 2007, 10 (06) : 749 - 756
  • [2] [Anonymous], 1971, ELEMENTS MATH MATIQU
  • [3] Arzhantseva G., 2008, preprint available on authors' websites
  • [4] Geometry and rigidity of mapping class groups
    Behrstock, Jason
    Kleiner, Bruce
    Minsky, Yair
    Mosher, Lee
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 781 - 888
  • [5] Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity
    Behrstock, Jason
    Drutu, Cornelia
    Mosher, Lee
    [J]. MATHEMATISCHE ANNALEN, 2009, 344 (03) : 543 - 595
  • [6] Asymptotic geometry of the mapping class group and Teichmuller space
    Behrstock, Jason A.
    [J]. GEOMETRY & TOPOLOGY, 2006, 10 : 1523 - 1578
  • [7] RELATIVELY HYPERBOLIC GROUPS
    Bowditch, B. H.
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
  • [8] Bowditch BH., 1991, Group Theory from a Geometric Viewpoint, P64
  • [9] Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
  • [10] COORNAERT M, 1990, LECT NOTES MATH, V1441, pR9