Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation

被引:23
作者
Fossati, Silvia [1 ]
Cipriani, Giulia [1 ]
Moroni, Flavio [1 ]
Chiarugi, Alberto [1 ]
机构
[1] Univ Florence, Dept Pharmacol, I-50139 Florence, Italy
关键词
neuronal apoptosis; PARP; AIF; energy failure; transcription;
D O I
10.1016/j.neuint.2006.08.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Poly(ADP-ribose)polymerase-1 (PARP-1) overactivation is a key event in neurodegeneration but the underlying molecular mechanisms wait to be unequivocally identified. Energy failure, transcriptional derangement and deadly nucleus-mitochondria cross-talk have been proposed as mechanisms responsible for PARP-1 neurotoxicity. In this study, we sought to determine how these mechanisms contributes to PARP-1-dependent neuronal death. We report that the PARP-1 activating agent methyl-nitrosoguanidine (MNNG) caused poly(ADP-ribosyl)ation-dependent death of pure mouse cortical neurons in culture. Upon PARP-1 hyperactivation, NAD and ATP storages only partially decreased, neurons rapidly acquired apoptotic morphology, apoptosis inducing factor and cytochrome c were released from mitochondria and caspase activation occurred. No evidence for p53 activation was found, lactate dehydrogenase release occurred only 18 h later, and JNK kinase was constitutively activated and not affected by PARP-1 activation. The PARP-I inhibitors 6-(5)H-phenanthridinone and N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide (PJ-34) prevented nucleotide depiction and cell death, whereas the transcription inhibitor actinomycin D did not affect PARP-1-dependent neurotoxicity. Together, our findings provide the first evidence that neither energy collapse nor transcriptional changes are involved in PARP-1-dependent apoptotic neuronal death, and support the existence of a poly(ADP-ribose)-mediated death signaling targeting mitochondria. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 49 条
[1]   Death without caspases, caspases without death [J].
Abraham, MC ;
Shaham, S .
TRENDS IN CELL BIOLOGY, 2004, 14 (04) :184-193
[2]   Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase [J].
Agarwal, ML ;
Agarwal, A ;
Taylor, WR ;
Wang, ZQ ;
Wagner, EF ;
Stark, GR .
ONCOGENE, 1997, 15 (09) :1035-1041
[3]   Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition [J].
Alano, CC ;
Ying, WH ;
Swanson, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18895-18902
[4]   The PARP superfamily [J].
Amé, JC ;
Spenlehauer, C ;
de Murcia, G .
BIOESSAYS, 2004, 26 (08) :882-893
[5]   SYMPOSIUM - CELLULAR-RESPONSE TO DNA DAMAGE - THE ROLE OF POLY(ADP-RIBOSE) - POLY(ADP-RIBOSE) IN THE CELLULAR-RESPONSE TO DNA DAMAGE [J].
BERGER, NA .
RADIATION RESEARCH, 1985, 101 (01) :4-15
[6]   Increased oxidative damage to DNA in ALS patients [J].
Bogdanov, M ;
Brown, RH ;
Matson, W ;
Smart, R ;
Hayden, D ;
O'Donnell, H ;
Beal, MF ;
Cudkowicz, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 29 (07) :652-658
[7]   Apoptosis-inducing factor (AIF):: a novel caspase-independent death effector released from mitochondria [J].
Candé, C ;
Cohen, I ;
Daugas, E ;
Ravagnan, L ;
Larochette, N ;
Zamzami, N ;
Kroemer, G .
BIOCHIMIE, 2002, 84 (2-3) :215-222
[8]   Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesist' revisited [J].
Chiarugi, A .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2002, 23 (03) :122-129
[9]   Simple but not simpler": toward a unified picture of energy requirements in cell death [J].
Chiarugi, A .
FASEB JOURNAL, 2005, 19 (13) :1783-1788
[10]   Intrinsic mechanisms of poly(ADP-ribose) neurotoxicity: Three hypotheses [J].
Chiarugi, A .
NEUROTOXICOLOGY, 2005, 26 (05) :847-855