Local Times of Subdiffusive Biased Walks on Trees

被引:7
作者
Hu, Yueyun [1 ]
机构
[1] Univ Paris XIII, LAGA, 99 Ave J-B Clement, F-93430 Villetaneuse, France
关键词
Biased random walk on the Galton-Watson tree; Local time; Concave recursive equations; TRANSIENT RANDOM-WALKS; GALTON-WATSON TREES; RANDOM ENVIRONMENT;
D O I
10.1007/s10959-015-0652-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a class of null-recurrent randomly biased walks on a supercritical Galton-Watson tree. We obtain the scaling limits of the local times and the quenched local probability for the biased walk in the subdiffusive case. These results are a consequence of a sharp estimate on the return time, whose analysis is driven by a family of concave recursive equations on trees.
引用
收藏
页码:529 / 550
页数:22
相关论文
共 27 条
[1]  
Aidekon E, 2015, SCALING LIMIT RECURR
[2]   Transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :525-559
[3]   Speed of the biased random walk on a Galton-Watson tree [J].
Aidekon, Elie .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :597-617
[4]   Large deviations for transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :159-189
[5]   A survey of Max-type recursive distributional equations [J].
Aldous, DJ ;
Bandyopadhyay, A .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) :1047-1110
[6]   The Number of Generations Entirely Visited for Recurrent Random Walks in a Random Environment [J].
Andreoletti, P. ;
Debs, P. .
JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (02) :518-538
[7]   Randomly biased walks on subcritical trees [J].
Ben Arous, Gerard ;
Hammond, Alan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (11) :1481-1527
[8]   BIASED RANDOM WALKS ON GALTON-WATSON TREES WITH LEAVES [J].
Ben Arous, Gerard ;
Fribergh, Alexander ;
Gantert, Nina ;
Hammond, Alan .
ANNALS OF PROBABILITY, 2012, 40 (01) :280-338
[9]  
BenArous G, 2006, ECOLE ETE PHYS HOUCH, VLXXXIII, P331
[10]   Almost sure convergence for stochastically biased random walks on trees [J].
Faraud, Gabriel ;
Hu, Yueyun ;
Shi, Zhan .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (3-4) :621-660