Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes

被引:85
作者
Guyes, Eric N. [1 ]
Malka, Tahel [2 ]
Suss, Matthew E. [1 ]
机构
[1] Technion Israel Inst Technol, Fac Mech Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Fac Chem Engn, IL-3200003 Haifa, Israel
关键词
ACTIVATED CARBON ELECTRODES; WATER DESALINATION; ELECTROSORPTION SELECTIVITY; CHARGE EFFICIENCY; REMOVAL; MODEL; ADSORPTION; DYNAMICS; POLARIZATION; SALTS;
D O I
10.1021/acs.est.8b06954
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Capacitive deionization (CDI) is an emerging water treatment technology often applied to brackish water desalination and water softening. Typical CDI cells consist of two microporous carbon electrodes sandwiching a dielectric separator, and desalt feedwater flowing through the cell by storing ions in electric double layers (EDLs) within charged micropores. CDI cells have demonstrated size-based ion selectivity wherein smaller hydrated ions are preferentially electrosorbed over larger hydrated ions. We demonstrate that such size-based selectivity can be substantially enhanced through the addition of chemical charge to micropores via surface functionalization. We develop a micropore EDL theory that includes both finite ion size effects and micropore chemical charge, which predicts such enhancements and elucidates that they result denser counterion packing micropores. With our experimental CDI cell, we desalted an electrolyte consisting of equimolar potassium (K+) and lithium (Li+) ions. We show that use of a surface-functionalized (oxidized) cathode significantly increased the electrosorption ratio of smaller K+ to larger Li+ compared to a cell with a pristine cathode, for example, from to similar to 1 to 1.84 for a charging voltage of 0.4 V. Our model predicts yet-higher electrosorption ratios are attainable, but our experimental cell suffered from significant cathode chemical charge degradation at applied voltages of similar to 1 V.
引用
收藏
页码:8447 / 8454
页数:8
相关论文
共 58 条
[1]  
Andelman M., 2014, J. Mater. Sci. Chem. Eng, V2, P16, DOI [DOI 10.4236/MSCE.2014.23002, 10.4236/msce.2014.23002]
[2]   Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes [J].
Avraham, Eran ;
Noked, Malachi ;
Bouhadana, Yaniv ;
Soffer, Abraham ;
Aurbach, Doron .
ELECTROCHIMICA ACTA, 2010, 56 (01) :441-447
[3]   Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions [J].
Bazant, Martin Z. ;
Kilic, Mustafa Sabri ;
Storey, Brian D. ;
Ajdari, Armand .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 152 (1-2) :48-88
[4]   Counterion volume effects in mixed electrical double layers [J].
Biesheuvel, P. M. ;
van Soestbergen, M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 316 (02) :490-499
[5]   Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge [J].
Biesheuvel, P. M. ;
Hamelers, H. V. M. ;
Suss, M. E. .
COLLOID AND INTERFACE SCIENCE COMMUNICATIONS, 2015, 9 :1-5
[6]   Attractive forces in microporous carbon electrodes for capacitive deionization [J].
Biesheuvel, P. M. ;
Porada, S. ;
Levi, M. ;
Bazant, M. Z. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) :1365-1376
[7]   Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes [J].
Biesheuvel, P. M. ;
Fu, Y. ;
Bazant, M. Z. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2012, 48 (06) :580-592
[8]   Theory of membrane capacitive deionization including the effect of the electrode pore space [J].
Biesheuvel, P. M. ;
Zhao, R. ;
Porada, S. ;
van der Wal, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 360 (01) :239-248
[9]  
Biesheuvel P. M, 2015, 15090635 ARXIV
[10]   HARD-SPHERE EQUATION OF STATE [J].
BOUBLIK, T .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (01) :471-&