From aggregative adsorption to surface depletion: aqueous systems of CnEm amphiphiles at hydrophilic surfaces

被引:5
作者
Rother, Gernot [1 ,2 ]
Muter, Dirk [3 ]
Bock, Henry [4 ]
Schoen, Martin [1 ]
Findenegg, Gerhard H. [1 ]
机构
[1] Tech Univ Berlin, Inst Chem, Stranski Lab Phys & Theoret Chem, Berlin, Germany
[2] Oak Ridge Natl Lab, Chem Sci Div, Geochem & Interfacial Sci Grp, Oak Ridge, TN USA
[3] Univ Copenhagen, Dept Chem, Nanosci Ctr, Copenhagen, Denmark
[4] Heriot Watt Univ, Inst Chem Sci, Edinburgh, Midlothian, Scotland
关键词
Adsorption; mesoscale simulations; nanopores; surface azeotrope; surfactant; NONIONIC SURFACTANTS; SOLID-SURFACES; SILICA; INTERFACE; WATER; THERMODYNAMICS; MICELLIZATION; MECHANISM;
D O I
10.1080/00268976.2017.1299234
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adsorption of a short-chain nonionic amphiphile (C6E3) at the surface of mesoporous silica glass (CPG) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C6E3 + water system show that no adsorption occurs up to the critical micelle concentration, at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes negative, which corresponds to preferential adsorption of water rather than amphiphile at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics simulations were performed to reveal the structural origin of this transition from aggregative adsorption to surface depletion. The simulations indicate that this transition can be attributed to the repulsive interaction between head groups, causing depletion of the amphiphile in the region around the corona of the surface micelles.
引用
收藏
页码:1408 / 1416
页数:9
相关论文
共 33 条