Hopf algebras of types Uq(sln)′ and Oq(SLn)′ which give rise to certain invariants of knots, links and 3-manifolds

被引:10
作者
Gelaki, S
Westreich, S
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Bar Ilan Univ, Interdisciplinary Dept Social Sci, Ramat Gan, Israel
关键词
D O I
10.1090/S0002-9947-00-02283-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine when Lusztig's U-q(sl(n))' has all the desired properties necessary to define invariants of knots, links and 3-manifolds. Specifically, we determine when it is ribbon, unimodular and factorizable. We also compute the integrals and distinguished elements involved.
引用
收藏
页码:3821 / 3836
页数:16
相关论文
共 15 条
[1]  
Drinfeld V.G., 1990, Leningrad Math. J., V2, P321
[2]  
DRINFELD VG, 1985, SOV MATH DOKL, V32, P251
[3]   On the quasitriangularity of Uq(sln)′ [J].
Gelaki, S ;
Westreich, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 :105-125
[4]  
HENNING MA, 1996, J LOND MATH SOC, V54, P593
[5]  
JIMBO M, IN PRESS QUANTUM GRO
[6]   INVARIANTS OF 3-MANIFOLDS DERIVED FROM FINITE-DIMENSIONAL HOPF-ALGEBRAS [J].
KAUFFMAN, LH ;
RADFORD, DE .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1995, 4 (01) :131-162
[7]   A NECESSARY AND SUFFICIENT CONDITION FOR A FINITE-DIMENSIONAL DRINFELD DOUBLE TO BE A RIBBON HOPF ALGEBRA [J].
KAUFFMAN, LH ;
RADFORD, DE .
JOURNAL OF ALGEBRA, 1993, 159 (01) :98-114
[8]   GAUSS CODES, QUANTUM GROUPS AND RIBBON HOPF-ALGEBRAS [J].
KAUFFMAN, LH .
REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (04) :735-773
[9]  
Lusztig G., 1990, J AM MATH SOC, V3, P257
[10]   A HOPF ALGEBRA FREENESS THEOREM [J].
NICHOLS, WD ;
ZOELLER, MB .
AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (02) :381-385