Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm

被引:1
|
作者
Zulfiqar, Muhammad [1 ]
Rasheed, Muhammad Babar [2 ]
机构
[1] Univ Engn & Technol, Dept Elect Engn, Lahore, Pakistan
[2] Univ Alcala, Escuela Politecn Super, ISG, Alcala De Henares, Spain
来源
2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC) | 2022年
关键词
Long short term memory; Genetic algorithm; Electric load forecasting; Deep learning;
D O I
10.1109/iSPEC54162.2022.1003307
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters ( ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting
    Atef, Sara
    Eltawil, Amr B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187 (187)
  • [32] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18) : 15029 - 15041
  • [33] Pattern-based Long Short-term Memory for Mid-term Electrical Load Forecasting
    Pelka, Pawel
    Dudek, Grzegorz
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [34] Substation short term load forecasting using neural network with genetic algorithm
    Worawit, T
    Wanchai, C
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 1787 - 1790
  • [35] Application of Long-Short Term Memory Network and its Variants in Short-term Power Load Time Series Forecasting
    Zhang, Yuanhang
    Li, Dan
    Yang, Baohua
    2020 INTERNATIONAL CONFERENCE ON SMART GRIDS AND ENERGY SYSTEMS (SGES 2020), 2020, : 197 - 202
  • [36] Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
    Wang, Shouxiang
    Wang, Xuan
    Wang, Shaomin
    Wang, Dan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 109 : 470 - 479
  • [37] Long Short-Term Memory Approach for Short-Term Air Quality Forecasting in the Bay of Algeciras (Spain)
    Rodriguez-Garcia, Maria Inmaculada
    Carrasco-Garcia, Maria Gema
    Gonzalez-Enrique, Javier
    Ruiz-Aguilar, Juan Jesus
    Turias, Ignacio J.
    SUSTAINABILITY, 2023, 15 (06)
  • [38] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [39] Photovoltaic power forecasting with a long short-term memory autoencoder networks
    Mohammed Sabri
    Mohammed El Hassouni
    Soft Computing, 2023, 27 : 10533 - 10553
  • [40] Photovoltaic power forecasting with a long short-term memory autoencoder networks
    Sabri, Mohammed
    El Hassouni, Mohammed
    SOFT COMPUTING, 2023, 27 (15) : 10533 - 10553