Subspace orthogonalization for substructuring preconditioners for non-self-adjoint elliptic problems

被引:0
作者
Starke, G
机构
[1] Inst. für Praktische Mathematik, Universität Karlsruhe, D-76128 Karlsruhe
关键词
Krylov subspace methods; preconditioning; iterative substructuring; domain decomposition; nonsymmetric elliptic problems; finite elements;
D O I
10.1137/S106482759325908X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For non-self-adjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, we introduce and study the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods, the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. We discuss the convergence properties of these iteration schemes and compare them with Krylov methods applied to the full preconditioned system.
引用
收藏
页码:1108 / 1121
页数:14
相关论文
共 23 条
[2]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[3]   DOMAIN DECOMPOSITION ALGORITHMS FOR INDEFINITE ELLIPTIC PROBLEMS [J].
CAI, XC ;
WIDLUND, OB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01) :243-258
[4]   CONVERGENCE RATE ESTIMATE FOR A DOMAIN DECOMPOSITION METHOD [J].
CAI, XC ;
GROPP, WD ;
KEYES, DE .
NUMERISCHE MATHEMATIK, 1992, 61 (02) :153-169
[5]   A Comparison of Some Domain Decomposition and ILU Preconditioned Iterative Methods for Nonsymmetric Elliptic Problems [J].
Cai, Xiao-Chuan ;
Gropp, William D. ;
Keyes, David E. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (05) :477-504
[6]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[7]   A CAPACITANCE MATRIX-METHOD FOR DIRICHLET PROBLEM ON POLYGON REGION [J].
DRYJA, M .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :51-64
[8]  
ELMAN H, 1982, THESIS YALE U NEW HA
[9]   A TRANSPOSE-FREE QUASI-MINIMAL RESIDUAL ALGORITHM FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :470-482
[10]  
Golub G, 2013, Matrix Computations, V4th