Spectral asymptotic analysis of a neutronic diffusion problem

被引:22
作者
Allaire, G
Malige, F
机构
[1] UNIV PARIS 06, LAN, F-75232 PARIS, FRANCE
[2] CEA SACLAY, DRN, DMT, SERMA, F-91191 GIF SUR YVETTE, FRANCE
[3] ECOLE POLYTECH, CMAP, F-91128 PALAISEAU, FRANCE
[4] EDF DER MECAN & MODELES NUMER, DER, PHR, F-92141 CLAMART, FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 324卷 / 08期
关键词
D O I
10.1016/S0764-4442(97)86972-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homogenization of an eigenvalue problem for neutronic diffusion in a periodic heterogeneous domain. Using a model with an ad hoc scaling of the coefficients (preserving physical intrinsic properties), we prove a convergence theorem justifying the method used in computations for cores of nuclear reactors. Finally, we indicate some possible generalizations.
引用
收藏
页码:939 / 944
页数:6
相关论文
共 15 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
ALLAIRE G, 1995, CR ACAD SCI I-MATH, V321, P293
[3]  
[Anonymous], 1985, ANAL MATH CALCUL NUM
[4]  
BENOIST P, 1964, 2278 CEAR
[5]  
Dautray R., 1985, ANAL MATH CALCUL NUM, V2
[6]  
DENIZ V., 1986, CRC HDB NUCLEAR REAC, VII, P409
[7]  
KESAVAN S, 1979, APPL MATH OPT, V5, P153, DOI 10.1007/BF01442554
[8]   HOMOGENIZED DIFFUSION APPROXIMATIONS TO THE NEUTRON-TRANSPORT EQUATION [J].
LARSEN, EW ;
HUGHES, RP .
NUCLEAR SCIENCE AND ENGINEERING, 1980, 73 (03) :274-285
[9]  
MALIGE F, 1996, THESIS
[10]  
Planchard J., 1995, METHODES MATH NEUTRO