Quaternion Fourier Transform and Generalized Lipschitz Classes

被引:7
|
作者
Loualid, El Mehdi [1 ]
Elgargati, Abdelghani [2 ]
Daher, Radouan [2 ]
机构
[1] Univ Chouaib Doukkali, Natl Sch Appl Sci El Jadida, Lab Engn Sci Energy, El Jadida, Morocco
[2] Univ Hassan 2, Fac Sci Ain Chock, Dept Math & Informat, Lab Topol Algebra Geometry & Discrete Math, BP 5366, Casablanca, Morocco
关键词
Quaternion Fourier transform; Generalized Lipschitz class; Generalized Zygmund class;
D O I
10.1007/s00006-020-01098-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For functions f is an element of L-1 (R-2, H) with the quaternion Fourier transform (QFT) (f) over cap we give necessary and sufficient conditions in terms of (f) over cap to ensure that f belongs either to one of the generalized Lipschitz classes H-alpha 1,(m)(alpha 2) and h m(alpha 1,alpha 2)(m) for 0 < alpha(1), alpha(2) < m.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quaternion Fourier Transform and Generalized Lipschitz Classes
    El Mehdi Loualid
    Abdelghani Elgargati
    Radouan Daher
    Advances in Applied Clifford Algebras, 2021, 31
  • [2] Discrete Fourier-Jacobi Transform and Generalized Lipschitz Classes
    El Mehdi Loualid
    Abdelghani Elgargati
    Radouan Daher
    Acta Mathematica Vietnamica, 2023, 48 : 259 - 269
  • [3] Discrete Fourier-Jacobi Transform and Generalized Lipschitz Classes
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Daher, Radouan
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (02) : 259 - 269
  • [4] Generalized Lipschitz Classes and Fourier Coefficients
    S. Yu. Tikhonov
    Mathematical Notes, 2004, 75 : 885 - 889
  • [5] Fourier transforms in generalized Lipschitz classes
    S. S. Volosivets
    B. I. Golubov
    Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 120 - 131
  • [6] Generalized Lipschitz classes and Fourier coefficients
    Tikhonov, SY
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 885 - 889
  • [7] On generalized Lipschitz classes and Fourier series
    Tikhonov, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (04): : 745 - 764
  • [8] Fourier Transforms in Generalized Lipschitz Classes
    Volosivets, S. S.
    Golubov, B. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 (01) : 120 - 131
  • [9] Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and q-Bessel Fourier Transform
    Volosivets, S. S.
    Krotova, Yu. I.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 55 - 65
  • [10] Fourier transforms and generalized Lipschitz classes in uniform metric
    Volosivets, S. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 344 - 352