Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation

被引:26
|
作者
Kalashnikov, V. L. [1 ]
机构
[1] Vienna Univ Technol, Inst Photon, A-1040 Vienna, Austria
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
奥地利科学基金会;
关键词
chirp modulation; Ginzburg-Landau theory; high-speed optical techniques; numerical analysis; optical solitons; FEMTOSECOND LASER-OSCILLATORS; MICROJOULE FRONTIER; DISPERSION; PULSES;
D O I
10.1103/PhysRevE.80.046606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easily traceable within a whole range of the equation parameters. Scaling properties of the chirped dissipative solitons are highly interesting for applications in the field of high-energy ultrafast laser physics.
引用
收藏
页数:8
相关论文
共 50 条