Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation

被引:26
|
作者
Kalashnikov, V. L. [1 ]
机构
[1] Vienna Univ Technol, Inst Photon, A-1040 Vienna, Austria
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
奥地利科学基金会;
关键词
chirp modulation; Ginzburg-Landau theory; high-speed optical techniques; numerical analysis; optical solitons; FEMTOSECOND LASER-OSCILLATORS; MICROJOULE FRONTIER; DISPERSION; PULSES;
D O I
10.1103/PhysRevE.80.046606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easily traceable within a whole range of the equation parameters. Scaling properties of the chirped dissipative solitons are highly interesting for applications in the field of high-energy ultrafast laser physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Ultrashort optical solitons in the cubic-quintic complex Ginzburg-Landau equation with higher-order terms
    Fewo, Serge I.
    Ngabireng, Claude M.
    Kofane, Timoleon C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)
  • [32] Dynamics of vortex and anti-vortex solitons in a vectorial cubic-quintic complex Ginzburg-Landau equation
    Nko'o, Marius Jeannot Nko'o
    Djazet, Alain
    Mandeng, Lucien Mandeng
    Fewo, Serge Ibraid
    Tchawoua, Clement
    Kofane, Timoleon Crepin
    Bemmo, David Tatchim
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [33] Role of the quintic nonlinear refractive term in the stability of dissipative solitons of the complex Ginzburg-Landau equation
    Soto-Crespo, Jose M.
    Akhmediev, N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (12) : 3541 - 3548
  • [34] Existence Conditions for Stable Stationary Solitons of the Cubic-Quintic Complex Ginzburg-Landau Equation with a Viscosity Term
    Hong, Woo-Pyo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (12): : 757 - 762
  • [35] Nonlinear structures of traveling waves in the cubic-quintic complex Ginzburg-Landau equation on a finite domain
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    PHYSICA SCRIPTA, 2013, 87 (06)
  • [36] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Conte, Robert
    Ng, Tuen-Wai
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 153 - 166
  • [37] Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
    Gutierrez, Pablo
    Escaff, Daniel
    Descalzi, Orazio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901): : 3227 - 3238
  • [38] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, NN
    Afanasjev, VV
    SotoCrespo, JM
    PHYSICAL REVIEW E, 1996, 53 (01) : 1190 - 1201
  • [39] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Robert Conte
    Tuen-Wai Ng
    Acta Applicandae Mathematicae, 2012, 122 : 153 - 166
  • [40] Detection and construction of an elliptic solution of the complex cubic-quintic Ginzburg-Landau equation
    Conte, R.
    Ng, Tuen-Wai
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (02) : 1073 - 1084