Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation

被引:26
|
作者
Kalashnikov, V. L. [1 ]
机构
[1] Vienna Univ Technol, Inst Photon, A-1040 Vienna, Austria
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
奥地利科学基金会;
关键词
chirp modulation; Ginzburg-Landau theory; high-speed optical techniques; numerical analysis; optical solitons; FEMTOSECOND LASER-OSCILLATORS; MICROJOULE FRONTIER; DISPERSION; PULSES;
D O I
10.1103/PhysRevE.80.046606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easily traceable within a whole range of the equation parameters. Scaling properties of the chirped dissipative solitons are highly interesting for applications in the field of high-energy ultrafast laser physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
    Mancas, S. C.
    Choudhury, S. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (02) : 1160 - 1172
  • [22] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 127
  • [23] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    Tafo, J. B. Gonpe
    Nana, L.
    Kofane, T. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (07):
  • [24] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [25] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [26] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [27] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [28] Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects
    Yan, Yuanyuan
    Liu, Wenjun
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 171 - 176
  • [29] Interaction of Two Pulsating Solitons with a Discrete Time Separation in Complex Cubic-Quintic Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 125 - 130
  • [30] Dynamical Behavior of the Random Field on the Pulsating and Snaking Solitons in Cubic-Quintic Complex Ginzburg-Landau Equation
    Bakhtiar, Nurizatul Syarfinas Ahmad
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870