Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation

被引:26
|
作者
Kalashnikov, V. L. [1 ]
机构
[1] Vienna Univ Technol, Inst Photon, A-1040 Vienna, Austria
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
奥地利科学基金会;
关键词
chirp modulation; Ginzburg-Landau theory; high-speed optical techniques; numerical analysis; optical solitons; FEMTOSECOND LASER-OSCILLATORS; MICROJOULE FRONTIER; DISPERSION; PULSES;
D O I
10.1103/PhysRevE.80.046606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easily traceable within a whole range of the equation parameters. Scaling properties of the chirped dissipative solitons are highly interesting for applications in the field of high-energy ultrafast laser physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [2] Stability of dissipative solitons as solutions of asymmetrical complex cubic-quintic Ginzburg-Landau equation
    Skarka, V.
    Aleksic, N. B.
    Gauthier, D.
    Timotijevic, D. V.
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 1196 - +
  • [3] Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation
    Aleksic, N. B.
    Pavlovic, G.
    Aleksic, B. N.
    Skarka, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (05) : 941 - 947
  • [4] Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [5] Effect of nonlinear gradient terms on the dynamics of solitons in the cubic-quintic complex Ginzburg-Landau equation
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 23 - 31
  • [6] Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions
    Cisternas, Jaime
    Descalzi, Orazio
    Albers, Tony
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2016, 116 (20)
  • [7] Dissipative Solitons in a Generalized Coupled Cubic-Quintic Ginzburg-Landau Equations
    Zakeri, Gholam-Ali
    Yomba, Emmanuel
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (08)
  • [8] Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation
    Kharenko, Denis S.
    Shtyrina, Olga V.
    Yarutkina, Irina A.
    Podivilov, Evgenii V.
    Fedoruk, Mikhail P.
    Babin, Sergey A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (10) : 2314 - 2319
  • [9] Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [10] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    Zhuravlev, MN
    Ostrovskaya, NV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (02) : 427 - 442