Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics

被引:19
作者
Choi, Ji Whae [1 ,2 ]
Hu, Rong [3 ,4 ,5 ]
Zhao, Yijun [6 ]
Purkayastha, Subhanik [1 ,2 ]
Wu, Jing [2 ,6 ]
McGirr, Aidan J. [7 ]
Stavropoulos, S. William [8 ]
Silva, Alvin C. [7 ]
Soulen, Michael C. [8 ]
Palmer, Matthew B. [9 ]
Zhang, Paul J. L. [9 ]
Zhu, Chengzhang [5 ,10 ]
Ahn, Sun Ho [1 ,2 ]
Bai, Harrison X. [1 ,2 ]
机构
[1] Brown Univ, Warren Alpert Med Sch, Providence, RI 02903 USA
[2] Rhode Isl Hosp, Dept Diagnost Imaging, Providence, RI 02903 USA
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[4] Hunan Prov Engn Technol Res Ctr Comp Vis & Intell, Changsha 410083, Peoples R China
[5] Minist Educ & China Mobile, Joint Lab Mobile Hlth, Changsha 410083, Hunan, Peoples R China
[6] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha 410011, Hunan, Peoples R China
[7] Mayo Clin Hosp, Dept Radiol, Scottsdale, AZ 85054 USA
[8] Hosp Univ Penn, Dept Radiol, 3400 Spruce St, Philadelphia, PA 19104 USA
[9] Hosp Univ Penn, Dept Pathol & Lab Med, 3400 Spruce St, Philadelphia, PA 19104 USA
[10] Cent South Univ, Coll Literature & Journalism, Changsha 410083, Peoples R China
基金
美国国家卫生研究院;
关键词
Renal cancer; Neoplasm progression; Imaging analysis; Medical imaging; EXTERNAL VALIDATION; SSIGN SCORE; SERIES; MODEL;
D O I
10.1007/s00261-020-02876-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Currently, there is a lack of noninvasive methods to stratify ccRCC prognosis prior to any invasive therapies. The purpose of this study was to preoperatively predict the tumor stage, size, grade, and necrosis (SSIGN) score of ccRCC using MRI-based radiomics. Methods A multicenter cohort of 364 histopathologically confirmed ccRCC patients (272 low [< 4] and 92 high [>= 4] SSIGN score) with preoperative T2-weighted and T1-contrast-enhanced MRI were retrospectively identified and divided into training (254 patients) and testing sets (110 patients). The performance of a manually optimized radiomics model was assessed by measuring accuracy, sensitivity, specificity, area under receiver operating characteristic curve (AUROC), and area under precision-recall curve (AUPRC) on an independent test set, which was not included in model training. Lastly, its performance was compared to that of a machine learning pipeline, Tree-Based Pipeline Optimization Tool (TPOT). Results The manually optimized radiomics model using Random Forest classification and Analysis of Variance feature selection methods achieved an AUROC of 0.89, AUPRC of 0.81, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set. The TPOT using Extra Trees Classifier achieved an AUROC of 0.94, AUPRC of 0.83, accuracy of 0.89 (95% CI 0.816-0.937), specificity of 0.95 (95% CI 0.875-0.984), and sensitivity of 0.72 (95% CI 0.537-0.852) on the test set. Conclusion Preoperative MR radiomics can accurately predict SSIGN score of ccRCC, suggesting its promise as a prognostic tool that can be used in conjunction with diagnostic markers.
引用
收藏
页码:2656 / 2664
页数:9
相关论文
共 29 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   CT-based radiomic model predicts high grade of clear cell renal cell carcinoma [J].
Ding, Jiule ;
Xing, Zhaoyu ;
Jiang, Zhenxing ;
Chen, Jie ;
Pan, Liang ;
Qiu, Jianguo ;
Xing, Wei .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 103 :51-56
[3]   Clear Cell Renal Cell Carcinoma Growth Correlates with Baseline Diffusion-weighted MRI in Von Hippel-Lindau Disease (vol 295, pg 583, 2020) [J].
Farhadi, Faraz ;
Nikpanah, Moozhan ;
Paschall, Anna K. ;
Shafiei, Ahmad ;
Tadayoni, Ashkan ;
Ball, Mark W. ;
Linehan, W. Marston ;
Jones, Elizabeth C. ;
Malayeri, Ashkan A. .
RADIOLOGY, 2020, 295 (03) :E10-E10
[4]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[5]   Screening computed tomography - Will it result in overdiagnosis of renal carcinoma? [J].
Fenton, JJ ;
Weiss, NS .
CANCER, 2004, 100 (05) :986-990
[6]   External validation of the Mayo Clinic stage, size, grade and necrosis (SSIGN) score to predict cancer specific survival using a European series of conventional renal cell carcinoma [J].
Ficarra, V ;
Martignoni, G ;
Lohse, C ;
Novara, G ;
Pea, M ;
Cavalleri, S ;
Artibani, W .
JOURNAL OF UROLOGY, 2006, 175 (04) :1235-1239
[7]   TNM staging system for renal-cell carcinoma: current status and future perspectives [J].
Ficarra, Vincenzo ;
Galfano, Antonio ;
Mancini, Mariangela ;
Martignoni, Guido ;
Artibani, Walter .
LANCET ONCOLOGY, 2007, 8 (06) :554-558
[8]   An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: The SSIGN score [J].
Frank, I ;
Blute, ML ;
Cheville, JC ;
Lohse, CM ;
Weaver, AL ;
Zincke, H .
JOURNAL OF UROLOGY, 2002, 168 (06) :2395-2400
[9]   External validation of the Mayo Clinic cancer specific survival score in a Japanese series of clear cell renal cell carcinoma [J].
Fujii, Yasuhisa ;
Saito, Kazutaka ;
Iimura, Yasumasa ;
Sakai, Yasuyuki ;
Koga, Fumitaka ;
Kawakami, Satoru ;
Kumagai, Jiro ;
Kihara, Kazunori .
JOURNAL OF UROLOGY, 2008, 180 (04) :1290-1295
[10]  
Garfield K, 2020, STATPEARLS