Chaos control: The problem of a bouncing ball revisited

被引:5
|
作者
Cristina Vargas, M. [1 ]
Huerta, D. A. [1 ]
Sosa, Victor [1 ]
机构
[1] IPN Unidad Merida, CINVESTAV, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico
关键词
bifurcation; chaos; nonlinear control systems; physics education; student experiments; RESONANT PARAMETRIC PERTURBATIONS; SYSTEM; SUPPRESSION;
D O I
10.1119/1.3148565
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The problem of a body bouncing on a periodically oscillating surface is revisited to demonstrate chaos control. When the bouncing body is magnetic, it is possible to modify its behavior by adding a magnetic driving force. The mechanism of chaos control may be understood by means of a mechanical analysis which shows that the main result of applying the driving force is to shift the bifurcation diagram in such a way that chaotic behavior is replaced by periodic behavior and vice versa. A simple experiment is presented, along with a numerical simulation, that provides insight into chaos control.
引用
收藏
页码:857 / 861
页数:5
相关论文
共 50 条
  • [1] Feedback control of impact dynamics: The bouncing ball revisited
    Ronsse, Renaud
    Sepulchre, Rodolphe
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4807 - 4812
  • [3] Bifurcations and chaos for the quasiperiodic bouncing ball
    deOliveira, CR
    Goncalves, PS
    PHYSICAL REVIEW E, 1997, 56 (04): : 4868 - 4871
  • [4] Diffusion and chaos in a bouncing ball model
    Maro, Stefano
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [5] Diffusion and chaos in a bouncing ball model
    Stefano Marò
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [6] Bouncing ball modes and quantum chaos
    Burq, N
    Zworski, M
    SIAM REVIEW, 2005, 47 (01) : 43 - 49
  • [7] Optimal Control of a Hybrid Rhythmic-Discrete Task: The Bouncing Ball Revisited
    Ronsse, Renaud
    Wei, Kunlin
    Sternad, Dagmar
    JOURNAL OF NEUROPHYSIOLOGY, 2010, 103 (05) : 2482 - 2493
  • [8] Orientation Control of the Bouncing Ball
    Clark, William
    Kassabova, Dora
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1318 - 1323
  • [9] BOUNCING BALL WITH A FINITE RESTITUTION - CHATTERING, LOCKING, AND CHAOS
    LUCK, JM
    MEHTA, A
    PHYSICAL REVIEW E, 1993, 48 (05): : 3988 - 3997
  • [10] The dynamics of a bouncing ball with a sinusoidally vibrating table revisited
    Luo, ACJ
    Han, RPS
    NONLINEAR DYNAMICS, 1996, 10 (01) : 1 - 18