Symmetric identities for degenerate generalized Bernoulli polynomials

被引:7
作者
Kim, Taekyun [1 ,2 ]
Dolgy, Dmitry V. [3 ]
Kim, Dae San [4 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Coll Sci, Tianjin 300387, Peoples R China
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[3] Far Eastern Fed Univ, Inst Nat Sci, Vladivostok 690950, Russia
[4] Sogang Univ, Dept Math, Seoul 121742, South Korea
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 02期
关键词
Symmetry; identity; degenerate generalized Bernoulli polynomial; NUMBERS;
D O I
10.22436/jnsa.009.02.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some interesting identities of symmetry for degenerate generalized Bernoulli polynomials attached to chi which are derived from the properties of symmetry of certain p-adic invariant integrals on Z(p). (C) 2016 All rights reserved.
引用
收藏
页码:677 / 683
页数:7
相关论文
共 19 条
[1]  
Acikgoz M., 2010, ADV DIFFERENCE EQU, V2010
[2]  
[Anonymous], DUKE MATH J
[3]  
[Anonymous], ADV DIFFERENCE EQU
[4]  
Bayad Abdelmejid, 2010, Advanced Studies in Contemporary Mathematics, V20, P389
[5]  
Carlitz L., 1956, Arch. Math., V7, P28, DOI [10.1007/BF01900520, DOI 10.1007/BF01900520]
[6]   Sums of products of generalized Bernoulli polynomials [J].
Chen, KW .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 208 (01) :39-52
[7]  
Chowla S., 1961, NORSKE VID SELSK FOR, V34, P102
[8]  
He Y., 2013, ADV DIFFERENCE EQU, V2013
[9]   A note on degenerate Bernoulli numbers and polynomials associated with p-adic invariant integral on Zp [J].
Kim, Dae San ;
Kim, Taekyun ;
Dolgy, Dmitry V. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :198-204
[10]   Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on a"currency sign p [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (01) :93-96