The automorphism group of a rigid affine variety

被引:18
作者
Arzhantsev, Ivan [1 ]
Gaifullin, Sergey [2 ]
机构
[1] Natl Res Univ, Fac Comp Sci, Higher Sch Econ, Kochnovskiy Proezd 3, Moscow 125319, Russia
[2] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Higher Algebra, Leninskie Gory 1, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Affine variety; automorphism; graded algebra; torus action; trinomial; TORUS ACTION; MAKAR-LIMANOV; RINGS; SURFACES; CONES;
D O I
10.1002/mana.201600295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An irreducible algebraic variety X is rigid if it admits no nontrivial action of the additive group of the ground field. We prove that the automorphism group Aut(X) of a rigid affine variety contains a unique maximal torus T. If the grading on the algebra of regular functions K[X] defined by the action of T is pointed, the group Aut( X) is a finite extension of T. As an application, we describe the automorphism group of a rigid trinomial affine hypersurface and find all isomorphisms between such hypersurfaces. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:662 / 671
页数:10
相关论文
共 24 条
  • [1] Arzhantsev I., 2015, CAMBRIDGE STUDIES AD, V144
  • [2] Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity
    Arzhantsev, I. V.
    Zaidenberg, M. G.
    Kuyumzhiyan, K. G.
    [J]. SBORNIK MATHEMATICS, 2012, 203 (07) : 923 - 949
  • [3] On rigidity of factorial trinomial hypersurfaces
    Arzhantsev, Ivan
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (05) : 1061 - 1070
  • [4] Arzhantsev I, 2014, MOSC MATH J, V14, P429
  • [5] On C-fibrations over Projective Curves
    Bandman, Tatiana
    Makar-Limanov, Leonid
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (03) : 669 - 686
  • [6] Affine cones over smooth cubic surfaces
    Cheltsov, Ivan
    Park, Jihun
    Won, Joonyeong
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (07) : 1537 - 1564
  • [7] Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
  • [8] On the rigidity of small domains
    Crachiola, A
    Makar-Limanov, L
    [J]. JOURNAL OF ALGEBRA, 2005, 284 (01) : 1 - 12
  • [9] Rigid Rings and Makar-Limanov Techniques
    Crachiola, Anthony J.
    Maubach, Stefan
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (11) : 4248 - 4266
  • [10] Dolgachev I, 2012, CLASS ALG GEOM MOD