Latent space models for network perception data

被引:3
作者
Sewell, Daniel K. [1 ]
机构
[1] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
cognitive social structures; latent space network model; network estimation; social network analysis; visualization; COGNITIVE-SOCIAL STRUCTURES; INFORMANT ACCURACY; POLITICAL LANDSCAPE; PREDICTORS; COMMUNICATION; CONCORDANCE; FRIENDS; HEALTH; BIASES;
D O I
10.1017/nws.2019.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants' perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents' perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants' biases and variances, and we describe a method for sidestepping forced-choice designs.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [31] Agent-Based Dynamic Network Models: Validation on Empirical Data
    Legendi, Richard Oliver
    Gulyas, Laszlo
    ADVANCES IN SOCIAL SIMULATION, 2014, 229 : 49 - 60
  • [32] Comparing the real-world performance of exponential-family random graph models and latent order logistic models for social network analysis
    Clark, Duncan A.
    Handcock, Mark S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (02) : 566 - 587
  • [33] Latent Growth Mixture Models as Latent Variable Multigroup Factor Models: Comment on McNeish et al. (2023)
    Wood, Phillip K.
    Wiedermann, Wolfgang
    Wood, Jules K.
    PSYCHOLOGICAL METHODS, 2024,
  • [34] SOCIAL SPACE DIFFUSION: APPLICATIONS OF A LATENT SPACE MODEL TO DIFFUSION WITH UNCERTAIN TIES
    Fisher, Jacob C.
    SOCIOLOGICAL METHODOLOGY, VOL 49, 2019, 49 : 258 - 294
  • [35] Discordant inflammation and pain in early and established rheumatoid arthritis: Latent Class Analysis of Early Rheumatoid Arthritis Network and British Society for Rheumatology Biologics Register data
    McWilliams, Daniel F.
    Ferguson, Eamonn
    Young, Adam
    Kiely, Patrick D. W.
    Walsh, David A.
    ARTHRITIS RESEARCH & THERAPY, 2016, 18
  • [36] Network ensemble clustering using latent roles
    Brandes, Ulrik
    Lerner, Juergen
    Nagel, Uwe
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (02) : 81 - 94
  • [37] Using Ego Network Data to Inform Agent-based Models of Diffusion
    Smith, Jeffrey A.
    Burow, Jessica
    SOCIOLOGICAL METHODS & RESEARCH, 2020, 49 (04) : 1018 - 1063
  • [38] Adaptive Siamese Tracking With a Compact Latent Network
    Dong, Xingping
    Shen, Jianbing
    Porikli, Fatih
    Luo, Jiebo
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8049 - 8062
  • [39] Network ensemble clustering using latent roles
    Ulrik Brandes
    Jürgen Lerner
    Uwe Nagel
    Advances in Data Analysis and Classification, 2011, 5 : 81 - 94
  • [40] Knowledge asymmetry and brokerage: Linking network perception to position in structural holes
    Hahl, Oliver
    Kacperczyk, Aleksandra Olenka
    Davis, Jason P.
    STRATEGIC ORGANIZATION, 2016, 14 (02) : 118 - 143