Latent space models for network perception data

被引:3
|
作者
Sewell, Daniel K. [1 ]
机构
[1] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
cognitive social structures; latent space network model; network estimation; social network analysis; visualization; COGNITIVE-SOCIAL STRUCTURES; INFORMANT ACCURACY; POLITICAL LANDSCAPE; PREDICTORS; COMMUNICATION; CONCORDANCE; FRIENDS; HEALTH; BIASES;
D O I
10.1017/nws.2019.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants' perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents' perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants' biases and variances, and we describe a method for sidestepping forced-choice designs.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [21] Data visualization via latent variables and mixture models: a brief survey
    Rodolphe Priam
    Mohamed Nadif
    Pattern Analysis and Applications, 2016, 19 : 807 - 819
  • [22] Relational event models for longitudinal network data with an application to interhospital patient transfers
    Duy Vu
    Lomi, Alessandro
    Mascia, Daniele
    Pallotti, Francesca
    STATISTICS IN MEDICINE, 2017, 36 (14) : 2265 - 2287
  • [23] Analysis of the formation of the structure of social networks by using latent space models for ranked dynamic networks
    Sewell, Daniel K.
    Chen, Yuguo
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (04) : 611 - 633
  • [24] Performance Analysis of Selected Data Mining Algorithms on Social Network Data and Discovery of User Latent Behavior
    Phulari, Santosh
    Bhalchandra, Parag
    Khamitkar, Santosh
    Deshmukh, Nilesh
    Lokhande, Sakharam
    Mekewad, Satish
    Wasnik, Pawan
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM, VOL 2, 2016, 411 : 383 - 393
  • [25] Interactive visual query of density maps on latent space via flow-based models
    Li, Ning
    Liang, Tianyi
    Jiang, Shiqi
    Wang, Changbo
    Li, Chenhui
    TRANSACTIONS IN GIS, 2024, 28 (04) : 884 - 901
  • [26] A Longitudinal Network Analysis of the Space Sector Using International Trade Data
    Guldstrand, Frank
    Lindstrom, Sandra
    Mattsson, Linn
    Westman, Jonatan
    SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2024, PT IV, 2025, 15214 : 319 - 332
  • [27] Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables
    Irincheeva, Irina
    Cantoni, Eva
    Genton, Marc G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) : 663 - 680
  • [28] Disentangling positive and negative partisanship in social media interactions using a coevolving latent space network with attractors model
    Zhu, Xiaojing
    Caliskan, Cantay
    Christenson, Dino P.
    Spiliopoulos, Konstantinos
    Walker, Dylan
    Kolaczyk, Eric D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (03) : 463 - 480
  • [29] Visualizing Large Sensor Network Data Sets in Space and Time with Vizzly
    Keller, Matthias
    Beutel, Jan
    Saukh, Olga
    Thiele, Lothar
    PROCEEDINGS OF THE 37TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS WORKSHOPS (LCN 2012), 2012, : 925 - 933
  • [30] Probabilistic Latent Document Network Embedding
    Le, Tuan M. V.
    Lauw, Hady W.
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 270 - 279