Latent space models for network perception data

被引:3
|
作者
Sewell, Daniel K. [1 ]
机构
[1] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
cognitive social structures; latent space network model; network estimation; social network analysis; visualization; COGNITIVE-SOCIAL STRUCTURES; INFORMANT ACCURACY; POLITICAL LANDSCAPE; PREDICTORS; COMMUNICATION; CONCORDANCE; FRIENDS; HEALTH; BIASES;
D O I
10.1017/nws.2019.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants' perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents' perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants' biases and variances, and we describe a method for sidestepping forced-choice designs.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [1] Hierarchical Network Models for Education Research: Hierarchical Latent Space Models
    Sweet, Tracy M.
    Thomas, Andrew C.
    Junker, Brian W.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2013, 38 (03) : 295 - 318
  • [2] A latent space model for cognitive social structures data
    Sosa, Juan
    Rodriguez, Abel
    SOCIAL NETWORKS, 2021, 65 : 85 - 97
  • [3] Grounding force-directed network layouts with latent space models
    Gaisbauer, Felix
    Pournaki, Armin
    Banisch, Sven
    Olbrich, Eckehard
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2023, 6 (02): : 707 - 739
  • [4] Latent network models to account for noisy, multiply reported social network data
    De Bacco, Caterina
    Contisciani, Martina
    Cardoso-Silva, Jonathan
    Safdari, Hadiseh
    Lima Borges, Gabriela
    Baptista, Diego
    Sweet, Tracy
    Young, Jean-Gabriel
    Koster, Jeremy
    Ross, Cody T.
    McElreath, Richard
    Redhead, Daniel
    Power, Eleanor A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (03) : 355 - 375
  • [5] Social Network Mediation Analysis: A Latent Space Approach
    Liu, Haiyan
    Jin, Ick Hoon
    Zhang, Zhiyong
    Yuan, Ying
    PSYCHOMETRIKA, 2021, 86 (01) : 272 - 298
  • [6] Latent Space Models for Dynamic Networks
    Sewell, Daniel K.
    Chen, Yuguo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1646 - 1657
  • [7] LEARNABILITY OF LATENT POSITION NETWORK MODELS
    Choi, David S.
    Wolfe, Patrick J.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 521 - 524
  • [8] Latent space approaches to social network analysis
    Hoff, PD
    Raftery, AE
    Handcock, MS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1090 - 1098
  • [9] A review of dynamic network models with latent variables
    Kim, Bomin
    Lee, Kevin H.
    Xue, Lingzhou
    Niu, Xiaoyue
    STATISTICS SURVEYS, 2018, 12 : 105 - 135
  • [10] Latent Attention Network With Position Perception for Visual Question Answering
    Zhang, Jing
    Liu, Xiaoqiang
    Wang, Zhe
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 11