Radial stability of anisotropic strange quark stars

被引:107
作者
Arbanil, Jose D. V. [1 ,2 ]
Malheiro, M. [1 ]
机构
[1] ITA Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Paulo, Brazil
[2] UPN Univ Privada Norte, Dept Ciencias, Av Alfredo Mendiola 6062 Urb Los Olivos, Lima, Peru
关键词
massive stars; stars; NEUTRON-STARS; PULSATIONS; SPHERES; MATTER; EQUATION;
D O I
10.1088/1475-7516/2016/11/012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic sigma = p(t) - p(r) are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr (R) = 0, and one that is nonnull at the surface, namely, sigma(s) = 0 and sigma(s) not equal 0. In the case sigma(s) = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case sigma(s) = 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of sigma(s). Thus, the stability star regions are determined always by the condition dM / d rho(c) > 0 only when the tangential pressure is maintained fixed at the star surface's p(t) (R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   RADIAL PULSATIONS OF STRANGE STARS AND THE INTERNAL COMPOSITION OF PULSARS [J].
BENVENUTO, OG ;
HORVATH, JE .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 250 (04) :679-682
[3]   ANISOTROPIC SPHERES IN GENERAL RELATIVITY [J].
BOWERS, RL ;
LIANG, EPT .
ASTROPHYSICAL JOURNAL, 1974, 188 (03) :657-665
[4]   Gravastars must have anisotropic pressures [J].
Cattoen, C ;
Faber, TR ;
Visser, M .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (20) :4189-4202
[5]   DYNAMICAL INSTABILITY OF GASEOUS MASSES APPROACHING SCHWARZSCHILD LIMIT IN GENERAL RELATIVITY [J].
CHANDRASEKHAR, S .
PHYSICAL REVIEW LETTERS, 1964, 12 (04) :114-&
[6]  
Chandrasekhar S., 1964, ASTROPHYS J, V140, P117
[7]   Did GW150914 produce a rotating gravastar? [J].
Chirenti, Cecilia ;
Rezzolla, Luciano .
PHYSICAL REVIEW D, 2016, 94 (08)
[8]   Anisotropic stars II: Stability [J].
Dev, K ;
Gleiser, M .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (08) :1435-1457
[9]  
Dev K., 2004, INT J MOD PHYS D, V13, P1389, DOI DOI 10.1142/S0218271804005584
[10]   Nonradial oscillations of anisotropic neutron stars in the Cowling approximation [J].
Doneva, Daniela D. ;
Yazadjiev, Stoytcho S. .
PHYSICAL REVIEW D, 2012, 85 (12)