Characterization of Hardy spaces by singular integrals and 'divergence-free' wavelets

被引:0
|
作者
Gilbert, JE [1 ]
Hogan, JA
Lakey, JD
机构
[1] Univ Texas, Austin, TX 78712 USA
[2] Macquarie Univ, Sydney, NSW 2109, Australia
[3] New Mexico State Univ, Las Cruces, NM 88003 USA
关键词
D O I
10.2140/pjm.2000.193.79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hardy space H-rho r(1) (R-n) consists of all divergence free r-form distributions f whose non-tangential maximal functions are in L-1 (R-n). We say that a system of singular integrals characterizes H-rho r(1) (R-n) if this space consists precisely of those divergence-free r-form distributions f whose images under the singular integral operators are integrable. When the operators are determined by Fourier multipliers, necessary and sufficient conditions are prescribed on the multipliers in order that the system characterize H-rho r(1) (R-n). The condition is analogous to the Janson-Uchiyama condition for the scalar-valued case and the characterization follows the lines of Uchiyama's constructive decomposition of BMO. In particular, it is shown how to build divergence-free r-form wavelets which play the same role that the R. Fefferman-Chang elementary decomposition played in Uchiyama's work.
引用
收藏
页码:79 / 105
页数:27
相关论文
共 50 条
  • [1] CLIFFORD WAVELETS, SINGULAR-INTEGRALS, AND HARDY-SPACES
    MITREA, M
    CLIFFORD WAVELETS, SINGULAR INTEGRALS, AND HARDY SPACES, 1994, 1575 : 1 - 112
  • [2] On interpolatory divergence-free wavelets
    Bittner, Kai
    Urban, Karsten
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 903 - 929
  • [3] DIVERGENCE-FREE VECTOR WAVELETS
    LEMARIERIEUSSET, PG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (05): : 213 - 216
  • [4] DIVERGENCE-FREE VECTOR WAVELETS
    BATTLE, G
    FEDERBUSH, P
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (01) : 181 - 195
  • [5] Multiwavelets on the interval and divergence-free wavelets
    Lakey, J
    Pereyra, MC
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 162 - 173
  • [6] Divergence-free wavelets with spline duals
    Zhao, Jun-Jian
    Zhang, Tao
    Beijing Gongye Daxue Xuebao / Journal of Beijing University of Technology, 2009, 35 (11): : 1573 - 1578
  • [7] Effective construction of divergence-free wavelets on the square
    Harouna, S. Kadri
    Perrier, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 74 - 86
  • [8] Divergence-Free Wavelets and High Order Regularization
    Kadri-Harouna, S.
    Derian, P.
    Heas, P.
    Memin, E.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 103 (01) : 80 - 99
  • [9] Divergence-Free Wavelets and High Order Regularization
    S. Kadri-Harouna
    P. Dérian
    P. Héas
    E. Mémin
    International Journal of Computer Vision, 2013, 103 : 80 - 99
  • [10] A NONEXISTENCE THEOREM FOR DIVERGENCE-FREE VECTOR WAVELETS
    LEMARIERIEUSSET, PG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 811 - 813