As a novel class of sensor matrixes, nanophase-separated amphiphilic polymeric conetworks (APCNs) open a new dimension for optical chemical and biochemical sensing. These conetworks consist of a hydrophilic phase-we used poly(2-hydroxyethyl acrylate), poly(2-(dimethylamino)ethylacrylate), or polycationic poly( 2-( trimethylammonium) ethyl acrylate) sand of a hydrophobic phase-poly( dimethylsiloxane). Sensors can be prepared by simple impregnation of the matrix. Due to nanophase separation, there is a spatial separation between areas in which the indicator reagents are well immobilized and areas that advantageously take care of the diffusive transport of the analyte, whereby these functionalities of the contrary phases can be exchanged. Thanks to the huge interface between the contrary phases, the accessibility of the indicator reagents is good, which makes it possible to design sensors with high sensitivity. To demonstrate the advantages of APCNs as matrixes, different prototypes of sensors were prepared, e. g., one to determine gaseous chlorine based on its reaction with immobilized o-tolidine and another to determine vaporous acids based on immobilized bromophenol blue dianions. As a breakthrough in biochemical sensing, we are also able to present an easily producible, optically transparent biochemical sensor to determine peroxides in nonpolar organic medias based on coimmobilized horseradish peroxidase and 2,2'-azino- bis(3-ethylbenzothiazoline-6-sulfonate).