On the time-fractional Navier-Stokes equations

被引:140
作者
Zhou, Yong [1 ,2 ]
Peng, Li [1 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Caputo fractional derivative; Mittag-Leffler functions; Mild solutions; Regularity; EXTERIOR DOMAINS; CAUCHY-PROBLEM; MILD SOLUTIONS; EXISTENCE; SPACES; LP;
D O I
10.1016/j.camwa.2016.03.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Navier-Stokes equations with time-fractional derivative of order alpha is an element of (0, 1). This type of equations can be used to simulate anomalous diffusion in fractal media. We establish the existence and uniqueness of local and global mild solutions in Jq. Meanwhile, we also give local mild solutions inh. Moreover, we prove the existence and regularity of classical solutions for such equations in J(q). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:874 / 891
页数:18
相关论文
共 32 条
[1]   Lp-theory for Stokes and Navier-Stokes equations with Navier boundary condition [J].
Amrouche, Cherif ;
Rejaiba, Ahmed .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1515-1547
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], FRACTIONAL EVOLUTION
[5]  
Cannone M., 1995, Ondelettes, paraproduits et NavierStokes
[6]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[7]   LARGE, GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS, SLOWLY VARYING IN ONE DIRECTION [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) :2859-2873
[8]   Boundary regularity of suitable weak solution for the Navier-Stokes equations [J].
Choe, Hi Jun .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) :2171-2187
[9]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[10]   On the Navier-Stokes equations in the half-space with initial and boundary rough data in Morrey spaces [J].
de Almeida, Marcelo Fernandes ;
Ferreira, Lucas C. F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) :1548-1570