Analysis of InAs/GaAs quantum dot solar cells using Suns-Voc measurements

被引:42
作者
Beattie, N. S. [1 ]
Zoppi, G. [1 ]
See, P. [2 ]
Farrer, I. [3 ]
Duchamp, M. [4 ,5 ]
Morrison, D. J. [6 ]
Miles, R. W. [1 ]
Ritchie, D. A. [3 ]
机构
[1] Northumbria Univ, Northumbria Photovolta Applicat Grp, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[4] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electron, D-52425 Julich, Germany
[5] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[6] Solar Capture Technol, Blyth NE24 1LZ, Northd, England
关键词
InAs quantum dots; Concentrator; Solar cell; BAND SOLAR; EFFICIENCY;
D O I
10.1016/j.solmat.2014.07.022
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of InAs/GaAs quantum dot solar cells was investigated up to an optical concentration of 500-suns. A high temperature spacer layer between successive layers of quantum dots was used to reduce the degradation in the open circuit voltage relative to a control device without quantum dots. This improvement is explained using optical data while structural imaging of quantum dot stacks confirm that the devices are not limited by strain. The evolution of the open circuit voltage as a function of number of suns concentration was observed to be nearly ideal when compared with a high performance single junction GaAs solar cell. Analysis of Suns-V-oc measurements reveal diode ideality factors as low as 1.16 which is indicative of a low concentration of defects in the devices. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:241 / 245
页数:5
相关论文
共 29 条
[1]  
[Anonymous], 2000, Proceedings of the 16th European photovoltaic solar energy conference
[2]   Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell [J].
Antolin, E. ;
Marti, A. ;
Farmer, C. D. ;
Linares, P. G. ;
Hernandez, E. ;
Sanchez, A. M. ;
Ben, T. ;
Molina, S. I. ;
Stanley, C. R. ;
Luque, A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[3]   Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells [J].
Bailey, Christopher G. ;
Forbes, David V. ;
Raffaelle, Ryne P. ;
Hubbard, Seth M. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[4]   A two-diode model regarding the distributed series resistance [J].
Breitenstein, O. ;
Rissland, S. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 110 :77-86
[5]   Resistance to edge recombination in GaAs-based dots-in-a-well solar cells [J].
Gu, Tingyi ;
El-Emawy, Mohamed A. ;
Yang, Kai ;
Stintz, Andreas ;
Lester, Luke F. .
APPLIED PHYSICS LETTERS, 2009, 95 (26)
[6]   Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage [J].
Guimard, Denis ;
Morihara, Ryo ;
Bordel, Damien ;
Tanabe, Katsuaki ;
Wakayama, Yuki ;
Nishioka, Masao ;
Arakawa, Yasuhiko .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[7]   Effect of strain compensation on quantum dot enhanced GaAs solar cells [J].
Hubbard, S. M. ;
Cress, C. D. ;
Bailey, C. G. ;
Raffaelle, R. P. ;
Bailey, S. G. ;
Wilt, D. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)
[8]  
Hubbard S.M., 2009, P 34 IEEE PHOT SPEC
[9]   Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage [J].
Jolley, Greg ;
Lu, Hao Feng ;
Fu, Lan ;
Tan, Hark Hoe ;
Jagadish, Chennupati .
APPLIED PHYSICS LETTERS, 2010, 97 (12)
[10]   Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers [J].
Laghumavarapu, R. B. ;
El-Emawy, M. ;
Nuntawong, N. ;
Moscho, A. ;
Lester, L. F. ;
Huffaker, D. L. .
APPLIED PHYSICS LETTERS, 2007, 91 (24)