Photoluminescence quenching in films of conjugated polymers by electrochemical doping

被引:43
|
作者
van Reenen, S. [1 ]
Vitorino, M. V. [1 ,2 ]
Meskers, S. C. J. [3 ]
Janssen, R. A. J. [1 ,3 ]
Kemerink, M. [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
[3] Eindhoven Univ Technol, Dept Chem Engn, NL-5600 MB Eindhoven, Netherlands
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
关键词
LIGHT-EMITTING-DIODES; P-N-JUNCTION; EXCITON DIFFUSION; ENERGY-TRANSFER; CHARGE; POLY(3-HEXYLTHIOPHENE); TRANSISTORS; CELLS; RECOMBINATION; DYNAMICS;
D O I
10.1103/PhysRevB.89.205206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm(-3). The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either F "orster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films
    Muthusamy, M.
    Muthukumaran, S.
    OPTIK, 2015, 126 (24): : 5200 - 5206
  • [42] Ground-State Interaction and Electrical Doping of Fluorinated C60 in Conjugated Polymers
    Solomeshch, Olga
    Yu, Young Jun
    Goryunkov, Alexey A.
    Sidorov, Lev N.
    Tuktarov, Renat F.
    Choi, Dong Hoon
    Jin, Jung-Il
    Tessler, Nir
    ADVANCED MATERIALS, 2009, 21 (44) : 4456 - +
  • [43] Thermal quenching of photoluminescence in Ga(AsBi)
    Shakfa, M. K.
    Wiemer, M.
    Ludewig, P.
    Jandieri, K.
    Volz, K.
    Stolz, W.
    Baranovskii, S. D.
    Koch, M.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (02)
  • [44] Bistable Resistive Memory Switches fabricated by Floating Thin Films of Conjugated Polymers
    Sharma, Shubham
    Kumari, Nikita
    Nagamatsu, Shuichi
    Nakamura, Masakazu
    Pandey, Shyam S.
    MATERIALS TODAY ELECTRONICS, 2023, 4
  • [45] Effect of disorder on exciton dissociation in conjugated polymers
    Feng, Yuwen
    Zhao, Hui
    Chen, Yuguang
    Yan, Yonghong
    CHINESE PHYSICS B, 2017, 26 (10)
  • [46] Modelling exciton diffusion in disordered conjugated polymers
    Athanasopoulos, S.
    Emelianova, E. V.
    Walker, A. B.
    Beljonne, D.
    ORGANIC PHOTONICS IV, 2010, 7722
  • [47] Electron deficient conjugated polymers based on benzotriazole
    Banal, James L.
    Subbiah, Jegadesan
    Graham, Hamish
    Lee, Jin-Kyun
    Ghiggino, Kenneth P.
    Wong, Wallace W. H.
    POLYMER CHEMISTRY, 2013, 4 (04) : 1077 - 1083
  • [48] Segmented conjugated polymers
    G. Padmanaban
    S. Ramakrishnan
    Pramana, 2003, 61 : 425 - 434
  • [49] Light-emitting characteristics of conjugated polymers
    Shim, HK
    Jin, JI
    POLYMERS FOR PHOTONICS APPLICATIONS I, 2002, 158 : 193 - 243
  • [50] Segmented conjugated polymers
    Padmanaban, G
    Ramakrishnan, S
    PRAMANA-JOURNAL OF PHYSICS, 2003, 61 (02): : 425 - 434