Photoluminescence quenching in films of conjugated polymers by electrochemical doping

被引:46
作者
van Reenen, S. [1 ]
Vitorino, M. V. [1 ,2 ]
Meskers, S. C. J. [3 ]
Janssen, R. A. J. [1 ,3 ]
Kemerink, M. [1 ,4 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
[3] Eindhoven Univ Technol, Dept Chem Engn, NL-5600 MB Eindhoven, Netherlands
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 20期
关键词
LIGHT-EMITTING-DIODES; P-N-JUNCTION; EXCITON DIFFUSION; ENERGY-TRANSFER; CHARGE; POLY(3-HEXYLTHIOPHENE); TRANSISTORS; CELLS; RECOMBINATION; DYNAMICS;
D O I
10.1103/PhysRevB.89.205206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm(-3). The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either F "orster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.
引用
收藏
页数:10
相关论文
共 41 条
[1]  
Capelli R, 2010, NAT MATER, V9, P496, DOI [10.1038/NMAT2751, 10.1038/nmat2751]
[2]   Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends [J].
Etzold, Fabian ;
Howard, Ian A. ;
Mauer, Ralf ;
Meister, Michael ;
Kim, Tae-Dong ;
Lee, Kwang-Sup ;
Baek, Nam Seob ;
Laquai, Frederic .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9469-9479
[3]   Anomalous exciton diffusion in the conjugated polymer MEH-PPV measured using a three-pulse pump-dump-probe anisotropy experiment [J].
Gaab, KM ;
Bardeen, CJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (49) :10801-10806
[4]   Photophysical and charge-transporting properties of the copolymer SuperYellow [J].
Gambino, Salvatore ;
Bansal, Ashu K. ;
Samuel, Ifor D. W. .
ORGANIC ELECTRONICS, 2013, 14 (08) :1980-1987
[5]   Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states [J].
Germs, W. Chr ;
van der Holst, J. J. M. ;
van Mensfoort, S. L. M. ;
Bobbert, P. A. ;
Coehoorn, R. .
PHYSICAL REVIEW B, 2011, 84 (16)
[6]   Hole-induced quenching of triplet and singlet excitons in conjugated polymers [J].
Gesquiere, AJ ;
Park, SJ ;
Barbara, PF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9556-9560
[7]   Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes [J].
Giebink, N. C. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2008, 77 (23)
[8]   Charge transport and trapping in Cs-doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes -: art. no. 155216 [J].
Gommans, HHP ;
Kemerink, M ;
Andersson, GG ;
Pijper, RMT .
PHYSICAL REVIEW B, 2004, 69 (15) :155216-1
[9]   DIFFUSION AND LONG-RANGE ENERGY-TRANSFER [J].
GOSELE, U ;
HAUSER, M ;
KLEIN, UKA ;
FREY, R .
CHEMICAL PHYSICS LETTERS, 1975, 34 (03) :519-522
[10]   Highly Efficient Single-Layer Polymer Ambipolar Light-Emitting Field-Effect Transistors [J].
Gwinner, Michael C. ;
Kabra, Dinesh ;
Roberts, Matthew ;
Brenner, Thomas J. K. ;
Wallikewitz, Bodo H. ;
McNeill, Christopher R. ;
Friend, Richard H. ;
Sirringhaus, Henning .
ADVANCED MATERIALS, 2012, 24 (20) :2728-2734