Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases

被引:66
|
作者
Book, Adam J. [1 ,2 ]
Yennamalli, Ragothaman M. [3 ]
Takasuka, Taichi E. [1 ,3 ]
Currie, Cameron R. [1 ,2 ]
Phillips, George N., Jr. [1 ,3 ]
Fox, Brian G. [1 ,3 ]
机构
[1] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA
[2] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
来源
BIOTECHNOLOGY FOR BIOFUELS | 2014年 / 7卷
基金
美国国家科学基金会;
关键词
Lytic polysaccharide monooxygenase; LPMO; Cellulase; Chitinase; Streptomyces; AA9; AA10; Enzyme evolution; Biofuels; BAYESIAN PHYLOGENETIC INFERENCE; GLYCOSIDE HYDROLASE FAMILY; BINDING PROTEIN; CELLOBIOSE DEHYDROGENASE; DEGRADING ENZYMES; CRYSTAL-STRUCTURE; PROVIDES INSIGHT; ACTIVE-SITE; CELLULOSE; CHITIN;
D O I
10.1186/1754-6834-7-109
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequences, structures, and evolution of LPMOs to understand the factors that may influence substrate specificity both within and between these enzyme families. Results: Comparative analysis of sequences, solved structures, and homology models from AA9 and AA10 LPMO families demonstrated that, although these two LPMO families are highly conserved, structurally they have minimal sequence similarity outside the active site residues. Phylogenetic analysis of the AA10 family identified clades with putative chitinolytic and cellulolytic activities. Estimation of the rate of synonymous versus non-synonymous substitutions (dN/dS) within two major AA10 subclades showed distinct selective pressures between putative cellulolytic genes (subclade A) and CBP21-like chitinolytic genes (subclade D). Estimation of site-specific selection demonstrated that changes in the active sites were strongly negatively selected in all subclades. Furthermore, all codons in the subclade D had dN/dS values of less than 0.7, whereas codons in the cellulolytic subclade had dN/dS values of greater than 1.5. Positively selected codons were enriched at sites localized on the surface of the protein adjacent to the active site. Conclusions: The structural similarity but absence of significant sequence similarity between AA9 and AA10 families suggests that these enzyme families share an ancient ancestral protein. Combined analysis of amino acid sites under Darwinian selection and structural homology modeling identified a subclade of AA10 with diversifying selection at different surfaces, potentially used for cellulose-binding and protein-protein interactions. Together, these data indicate that AA10 LPMOs are under selection to change their function, which may optimize cellulolytic activity. This work provides a phylogenetic basis for identifying and classifying additional cellulolytic or chitinolytic LPMOs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi
    Franco Cairo, Joao Paulo L.
    Cannella, David
    Oliveira, Leandro C.
    Goncalves, Thiago A.
    Rubio, Marcelo V.
    Terrasan, Cesar R. F.
    Tramontina, Robson
    Mofatto, Luciana S.
    Carazzolle, Marcelo F.
    Garcia, Wanius
    Felby, Claus
    Damasio, Andre
    Walton, Paul H.
    Squina, Fabio
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2021, 216
  • [22] Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase
    Hall, Kelsi R.
    Mollatt, Maja
    Forsberg, Zarah
    Golten, Ole
    Schwaiger, Lorenz
    Ludwig, Roland
    Ayuso-Fernandez, Ivan
    Eijsink, Vincent G. H.
    Sorlie, Morten
    ACS OMEGA, 2024, 9 (21): : 23040 - 23052
  • [23] Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity
    Frommhagen, Matthias
    Koetsier, Martijn J.
    Westphal, Adrie H.
    Visser, Jaap
    Hinz, Sandra W. A.
    Vincken, Jean-Paul
    van Berkel, Willem J. H.
    Kabel, Mirjam A.
    Gruppen, Harry
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [24] Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida
    Serra, Ilenia
    Piccinini, Daniele
    Paradisi, Alessandro
    Ciano, Luisa
    Bellei, Marzia
    Bortolotti, Carlo Augusto
    Battistuzzi, Gianantonio
    Sola, Marco
    Walton, Paul H.
    Di Rocco, Giulia
    PROTEIN SCIENCE, 2022, 31 (03) : 591 - 601
  • [25] AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila
    Sun, Peicheng
    Huang, Zhiyu
    Banerjee, Sanchari
    Kadowaki, Marco A. S.
    Veersma, Romy J.
    Magri, Silvia
    Hilgers, Roelant
    Muderspach, Sebastian J.
    Laurent, Christophe V. F. P.
    Ludwig, Roland
    Cannella, David
    Lo Leggio, Leila
    van Berkel, Willem J. H.
    Kabel, Mirjam A.
    ACS CATALYSIS, 2023, 13 (07) : 4454 - 4467
  • [26] Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown
    Monclaro, Antonielle Vieira
    Ferreira Filho, Edivaldo Ximenes
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 102 : 771 - 778
  • [27] Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide Monooxygenases Determine Their Oxidative Regioselectivity
    Danneels, Barbara
    Tanghe, Magali
    Desmet, Tom
    BIOTECHNOLOGY JOURNAL, 2019, 14 (03)
  • [28] Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes
    Loose, Jennifer S. M.
    Arntzen, Magnus O.
    Bissaro, Bastien
    Ludwig, Roland
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    BIOCHEMISTRY, 2018, 57 (28) : 4114 - 4124
  • [29] The discovery and enzymatic characterization of a novel AA10 LPMO from Bacillus amyloliquefaciens with dual substrate specificity
    Guo, Xiao
    An, Yajing
    Jiang, Luying
    Zhang, Jiayu
    Lu, Fuping
    Liu, Fufeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 203 : 457 - 465
  • [30] The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases
    Dade, Christopher M.
    Douzi, Badreddine
    Cambillau, Christian
    Ball, Genevieve
    Voulhoux, Rome
    Forest, Katrina T.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 1064 - 1078