Interpolation functions and the Lions-Peetre interpolation construction

被引:3
作者
Ovchinnikov, V. I. [1 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
基金
俄罗斯基础研究基金会;
关键词
interpolation spaces; interpolation functors with function parameters; interpolation orbits; orbits with respect to von Neumann-Schatten operators; optimal interpolation theorems; embedding theorems for Orlicz-Sobolev spaces; EMBEDDING-THEOREMS; COUPLES; ORBITS; SPACES;
D O I
10.1070/RM2014v069n04ABEH004908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalization of the Lions-Peetre interpolation method of means considered in the present survey is less general than the generalizations known since the 1970s. However, our level of generalization is sufficient to encompass spaces that are most natural from the point of view of applications, like the Lorentz spaces, Orlicz spaces, and their analogues. The spaces phi(X-0, X-1)(p0, p1) considered here have three parameters: two positive numerical parameters p(0) and p(1) of equal standing, and a function parameter phi. For p(0) not equal p(1) these spaces can be regarded as analogues of Orlicz spaces under the real interpolation method. Embedding criteria are established for the family of spaces phi(X-0, X-1)(p0, p1), together with optimal interpolation theorems that refine all the known interpolation theorems for operators acting on couples of weighted spaces L-p and that extend these theorems beyond scales of spaces. The main specific feature is that the function parameter phi can be an arbitrary natural functional parameter in the interpolation.
引用
收藏
页码:681 / 741
页数:61
相关论文
共 44 条
[1]  
[Anonymous], 1964, PUBL MATH I, DOI 10.1007/BF02684796
[2]  
Aronszajn N., 1965, Ann. Mat. Pura Appl, V68, P51, DOI [10.1007/BF02411022, DOI 10.1007/BF02411022]
[3]  
Bennett C., 1988, PURE APPL MATH, V129
[4]  
Bennett G., 1973, J FUNCT ANAL, V13, P20, DOI 10.1016/0022-1236(73)90064-5
[5]  
Bergh J., 1978, GRUNDLEHREN MATH WIS, V223
[6]  
Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773, DOI 10.1080/03605308008820154
[7]   CALDERON COUPLES OF LIPSCHITZ-SPACES [J].
BRUDNYI, Y ;
SHTEINBERG, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (02) :459-498
[8]  
BRUDNYI YA, 1991, N HOLLAND MATH LIB, V47
[9]  
Brudnyi YA., 1988, J.Soviet Math, V42, P2009, DOI [10.1007/BF01106938, DOI 10.1007/BF01106938]
[10]  
Cianchi A, 2004, REV MAT IBEROAM, V20, P427