HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES

被引:1
作者
Sun, Qinxiu [1 ]
Yu, Xiao [2 ]
Li, Hongliang [3 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[2] Shangrao Normal Univ, Dept Math, Shangrao 334001, Peoples R China
[3] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy operator; Orlicz-Lorentz spaces; weighted Lorentz spaces; boundedness; compactness; INTEGRAL-OPERATORS; NORM INEQUALITIES; BOUNDEDNESS; COMPACTNESS; CONVEXITY;
D O I
10.1007/s13226-020-0453-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weight criteria for the boundedness and compactness of generalized Hardy-type operators Tf(x) = u(1)(x) integral({phi(y)<=psi(x)})f(y)u(2)(y)v(0)(y)d mu(y), x is an element of X, (0.1) in Orlicz-Lorentz spaces defined on measure spaces is investigated where the functions phi, psi, u(1), u(2), v(0) are positive measurable functions. Some sufficient conditions of boundedness of T : Lambda(G0)(v0) (w(0)) -> Lambda(G1)(v1) (w(1)) and T : Lambda(G0)(v0) (w(0)) -> Lambda(G1,infinity)(v1) (w(1)) are obtained on Orlicz-Lorentz spaces. Furthermore, we achieve sufficient and necessary conditions for T to be bounded and compact from a weighted Lorentz space Lambda(p0)(v0) (w(0)) to another Lambda(p1,q1)(v1) (w(1)). It is notable that the function spaces concerned here are quasi-Banach spaces instead of Banach spaces.
引用
收藏
页码:1105 / 1132
页数:28
相关论文
共 40 条
[1]   MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES AND HARDY INEQUALITY WITH WEIGHTS FOR NONINCREASING FUNCTIONS [J].
ARINO, MA ;
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :727-735
[2]  
Bennett C., 1988, PURE APPL MATH, V129
[3]  
Bradley J. S., 1978, Canad. Math. Bull., V21, P405
[4]  
Carro MJ, 2007, MEM AM MATH SOC, V187, pIX
[5]   The Hardy-Littlewood maximal function and weighted Lorentz spaces [J].
Carro, MJ ;
Soria, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :146-158
[6]   WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR [J].
CARRO, MJ ;
SORIA, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :480-494
[7]  
Edmunds D. E., 2002, BOUNDEDNESS COMPACTN
[8]  
EDMUNDS DE, 1994, STUD MATH, V109, P73
[9]  
EDMUNDS DE, 1998, P A RAZMADZE MATH I, V117, P7
[10]   WEIGHTED LORENTZ NORM INEQUALITIES FOR INTEGRAL-OPERATORS [J].
FERREYRA, EV .
STUDIA MATHEMATICA, 1990, 96 (02) :125-134