Overstoichiometric oxides Ln2NiO4+δ (Ln = La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application

被引:59
作者
Ogier, Tiphaine [1 ]
Mauvy, Fabrice [1 ]
Bassat, Jean-Marc [1 ]
Laurencin, Jerome [2 ]
Mougin, Julie [2 ]
Grenier, Jean-Claude [1 ]
机构
[1] Univ Bordeaux, ICMCB, CNRS, 87 Ave Dr A Schweitzer, F-33608 Pessac, France
[2] CEA Grenoble, LITEN, F-38054 Grenoble, France
关键词
Rare-earth nickelate oxides; Oxygen electrode; Anodic overpotential; High temperature steam electrolysis; Hydrogen production; HYDROGEN-PRODUCTION; STEAM ELECTROLYSIS; FUEL-CELLS; PERFORMANCE; CATHODES; IMPEDANCE;
D O I
10.1016/j.ijhydene.2015.09.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the oxygen electrode performances of the single solid oxide electrolysis cell (SOEC) is of peculiar interest as it contributes to a large extent to the cell polarization resistance. The present study focuses on alternative oxygen electrode materials: the oxygen overstoichiometric rare-earth nickelate oxides Ln(2)NiO(4+delta) (Ln = La, Pr or Nd). Their electrochemical properties are measured on three-electrode symmetrical half-cells under zero dc conditions and under anodic polarization. The electrochemical characteristics are compared to those of the usual perovskite La0.6Sr0.4Fe0.8Co0.2O3-delta (LSFC) electrode. Under polarization, in the temperature range from 600 degrees C to 800 degrees C, the Pr2NiO4+delta-based cells exhibit the highest performances. At the same anodic overpotential of 0.15 V/Pt/air, the current densities measured through Pr2NiO4+delta nickelate-based cells are more than ten times larger than those obtained with a cell based on LSCF. The modeling of the anodic overpotential phenomena (activation and concentration terms) occurring at the oxygen electrode is achieved and discussed. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15885 / 15892
页数:8
相关论文
共 30 条
[1]   Reference electrode placement and seals in electrochemical oxygen generators [J].
Adler, SB ;
Henderson, BT ;
Wilson, MA ;
Taylor, DM ;
Richards, RE .
SOLID STATE IONICS, 2000, 134 (1-2) :35-42
[2]  
Bard A.J., 1983, ELECTROCHIMIE PRINCI
[3]   Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides [J].
Boehm, E ;
Bassat, JM ;
Dordor, P ;
Mauvy, F ;
Grenier, JC ;
Stevens, P .
SOLID STATE IONICS, 2005, 176 (37-38) :2717-2725
[4]   High temperature water electrolysis in solid oxide cells [J].
Brisse, Annabelle ;
Schefold, Josef ;
Zahid, Mohsine .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5375-5382
[5]   Electrochemical Performances of Cells Containing Alternative Oxygen Electrodes, Ln2NiO4+δ (Ln=Nd, La) [J].
Chauveau, F. ;
Mougin, J. ;
Mauvy, F. ;
Bassat, J. M. ;
Grenier, J. C. .
SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02) :2557-2564
[6]   A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ [J].
Chauveau, F. ;
Mougin, J. ;
Bassat, J. M. ;
Mauvy, F. ;
Grenier, J. C. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :744-749
[7]   Development and operation of alternative oxygen electrode materials for hydrogen production by high temperature steam electrolysis [J].
Chauveau, Florent ;
Mougin, Julie ;
Mauvy, Fabrice ;
Bassat, Jean-Marc ;
Grenier, Jean-Claude .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (13) :7785-7790
[8]   Modeling at solid oxide heat exchanger integrated stacks and simulation at high fuel utilization [J].
Costamagna, P ;
Honegger, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (11) :3995-4007
[9]   OXIDES, MIXED OR IN SOLID-SOLUTION, HIGHLY DISPERSED OBTAINED BY THERMAL-DECOMPOSITION OF AMORPHOUS PRECURSORS [J].
COURTY, P ;
AJOT, H ;
MARCILLY, C ;
DELMON, B .
POWDER TECHNOLOGY, 1973, 7 (01) :21-38
[10]   ELECTROCHEMICAL HIGH-TEMPERATURE TECHNOLOGY FOR HYDROGEN-PRODUCTION OR DIRECT ELECTRICITY-GENERATION [J].
DONITZ, W ;
DIETRICH, G ;
ERDLE, E ;
STREICHER, R .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1988, 13 (05) :283-287