MINIMAL CYCLIC CODES OF LENGTH 16pn, OVER GF(q) WHERE q IS PRIME POWER OF THE FORM 16k

被引:0
作者
Singh, Vishvajit [2 ]
Pruthi, Manju [2 ]
Singh, Jagbir [1 ]
机构
[1] IG Univ, Dept Math, Meerpur, Rewari, India
[2] Maharshi Dayanand Univ, Dept Math, Rohtak, Haryana, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2019年 / 19卷 / 02期
关键词
cyclotomic cosets; primitive idempotents; generating polynomials; minimum distance;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the expressions for primitive idempotents in group algebra of cyclic group G of length 16p(n), where p is prime and q is some prime power (of type 16k + 9) n is a positive integer, order of q modulo p(n) is phi(p(n))/2, are obtained. Associated with this the generating polynomials and minimum distance bounds for the corresponding cyclic codes are obtained.
引用
收藏
页码:97 / 127
页数:31
相关论文
共 11 条
[1]  
Arora S. K., 2002, S E ASIAN B MATH, V26, P549, DOI DOI 10.1007/S100120200058
[2]   Minimal cyclic codes of length 2pn [J].
Arora, SK ;
Pruthi, M .
FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (02) :177-187
[3]   Minimal cyclic codes of length pnq [J].
Bakshi, GK ;
Raka, M .
FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (04) :432-448
[4]  
Batra S., 2001, KOREAN J COMPUT APPL, V8, P531
[5]   Some cyclic codes of length 2p n [J].
Batra, Sudhir ;
Arora, S. K. .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (01) :41-69
[6]   Irreducible cyclic codes of length 4pn and 8pn [J].
Li, Fengwei ;
Yue, Qin ;
Li, Chengju .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :208-234
[7]  
Pless V., 1981, INTRO THEORY ERROR C
[8]  
Pruthi M., 1997, Finite Fields and their Applications, V3, P99, DOI 10.1006/ffta.1996.0156
[9]   Minimal cyclic codes of length pnq [J].
Sahni, Amita ;
Sehgal, Poonam Trama .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) :1017-1036
[10]  
Singh J., 2017, INT J PURE APPL MATH, V116, P217