Stability of the path-path Ramsey number

被引:6
作者
Gyarfas, Andras [1 ]
Sarkozy, Gabor N. [1 ,2 ]
Szemeredi, Endre [3 ,4 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Ramsey theory; Stability; Path;
D O I
10.1016/j.disc.2009.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph K. we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4590 / 4595
页数:6
相关论文
共 13 条
  • [1] BOLLOBAS B, 1976, J LOND MATH SOC, V12, P219
  • [2] Bollobas B., 1978, EXTREMAL GRAPH THEOR
  • [3] Gerencsr L., 1967, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., V10, P167
  • [4] Graham R., 1990, RAMSEY THEORY
  • [5] GYARFAS A, MONOCHROMATIC UNPUB
  • [6] Three-color Ramsey numbers for paths
    Gyarfas, Andras
    Ruszinko, Miklos
    Sarkozy, Gabor N.
    Szemeredi, Endre
    [J]. COMBINATORICA, 2007, 27 (01) : 35 - 69
  • [7] KOHAYAKAWA Y, 3 COLORED RAMS UNPUB
  • [8] Kovari T., 1954, C MATH, V3, P50
  • [9] LEVITT I, DISCRETE MA IN PRESS
  • [10] Cycles and stability
    Nikiforov, V.
    Schelp, R. H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (01) : 69 - 84