Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes

被引:91
作者
Lipnikov, K
Morel, J
Shashkov, M
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Comp & Computat Sci Div, CCS 2, Los Alamos, NM 87545 USA
关键词
mimetic finite differences; quadrilateral meshes; diffusion equation;
D O I
10.1016/j.jcp.2004.02.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mimetic discretizations based on the support-operators methodology are derived for non-orthogonal locally refined quadrilateral meshes. The second-order convergence rate on non-smooth meshes is verified with numerical examples. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 12 条
[1]  
ANDERSON RW, 20020738 AIAA
[2]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[3]   Elimination of adaptive grid interface errors in the discrete cell centered pressure equation [J].
Edwards, MG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :356-372
[4]   LOCAL REFINEMENT TECHNIQUES FOR ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS .1. ERROR ANALYSIS [J].
EWING, RE ;
LAZAROV, RD ;
VASSILEVSKI, PS .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :437-461
[5]   Mimetic finite difference methods for diffusion equations [J].
Hyman, J ;
Morel, J ;
Shashkov, M ;
Steinberg, S .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :333-352
[6]   A local support-operators diffusion discretization scheme for hexahedral meshes [J].
Morel, JE ;
Hall, ML ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (01) :338-372
[7]   A local support-operators diffusion discretization scheme for quadrilateral r-z meshes [J].
Morel, JE ;
Roberts, RM ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 144 (01) :17-51
[8]   AN ADAPTIVE CARTESIAN GRID METHOD FOR UNSTEADY COMPRESSIBLE FLOW IN IRREGULAR REGIONS [J].
PEMBER, RB ;
BELL, JB ;
COLELLA, P ;
CRUTCHFIELD, WY ;
WELCOME, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (02) :278-304
[9]   A parallel adaptive grid algorithm for computational shock hydrodynamics [J].
Quirk, JJ .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (04) :427-453
[10]   ALGEBRAIC MULTIGRID (AMG) - EXPERIENCES AND COMPARISONS [J].
STUBEN, K .
APPLIED MATHEMATICS AND COMPUTATION, 1983, 13 (3-4) :419-451