Computer-aided molecular design of highly potent HIV-1 RT inhibitors: 3D QSAR and molecular docking studies of efavirenz derivatives

被引:16
|
作者
Pungpo, P.
Saparpakorn, P.
Wolschann, P.
Hannongbua, S.
机构
[1] Ubonratchathani Univ, Fac Sci, Ubon Ratchathani 34190, Thailand
[2] Kasetsart Univ, Fac Sci, Bangkok 10900, Thailand
[3] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
关键词
3D-QSAR; CoMFA; CoMSIA; docking; efavirenz; NNRTIs;
D O I
10.1080/10629360600884520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ligand- and structure-based design approaches have been applied to an extended series of 74 efavirenz compounds effectively inhibiting wild type (WT) and mutant type (K103N) HIV-1 reverse transcriptase (RT). For ligand-based approach, three dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA), were performed. The starting geometry of efavirenz was obtained from X-ray crystallographic data. The efavirenz derivatives were constructed and fully optimized by ab-initio molecular orbital method at HF/3-21G level. Reliable QSAR models for high predictive abilities were developed. Regarding WT and K103N inhibitions, CoMFA models with r(cv)(2) = 0.651 and 0.678 and CoMSIA models with r(cv)(2) = 0.662 and 0.743 were derived, respectively. The interpretation obtained from the models highlights different structural requirements for inhibition of WT and K103N HIV-1 RT. To elucidate potential binding modes of efavirenz derivatives in the binding pocket of WT and K103N HIV-1 RT, structure-based approach based on computational docking studies of selected efavirenz compounds were performed by using GOLD and FlexX programs. The results derived from docking analysis give additional information and further probe the inhibitor-enzyme interactions. The correlation of the results obtained from 3D QSAR and docking models validate each other and lead to better understanding of the structural requirements for the activity. Therefore, these integrated results are informative to provide key features and a helpful guideline for novel compound design active against HIV-1 RT.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 50 条
  • [41] 3D-QSAR Studies of S-DABO Derivatives as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors
    Wang, Yueping
    Chang, Jie
    Wang, Jiangyuan
    Zhong, Peng
    Zhang, Yufang
    Lai, Christopher Cong
    Hez, Yanping
    LETTERS IN DRUG DESIGN & DISCOVERY, 2019, 16 (08) : 868 - 881
  • [42] Molecular docking and 3D-QSAR studies of Yersinia protein tyrosine phosphatase YopH inhibitors
    Hu, X
    Stebbins, CE
    BIOORGANIC & MEDICINAL CHEMISTRY, 2005, 13 (04) : 1101 - 1109
  • [43] Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking
    Lu, Xia
    Zhao, Lingzhou
    Xue, Tian
    Zhang, Huabei
    MEDICINAL CHEMISTRY RESEARCH, 2014, 23 (04) : 1976 - 1997
  • [44] 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors: Application of molecular field analysis
    Nunthanavanit, Patcharawee
    Anthony, Nahoum G.
    Johnston, Blair F.
    Mackay, Simon P.
    Ungwitayatorn, Jiraporn
    ARCHIV DER PHARMAZIE, 2008, 341 (06) : 357 - 364
  • [45] Design of novel focal adhesion kinase inhibitors using 3D-QSAR and molecular docking
    Xia Lu
    Lingzhou Zhao
    Tian Xue
    Huabei Zhang
    Medicinal Chemistry Research, 2014, 23 : 1976 - 1997
  • [46] In silico design of novel PIN1 inhibitors by combined of 3D-QSAR, molecular docking, molecular dynamic simulation and ADMET studies
    Tabti, Kamal
    Elmchichi, Larbi
    Sbai, Abdelouahid
    Maghat, Hamid
    Bouachrine, Mohammed
    Lakhlifi, Tahar
    JOURNAL OF MOLECULAR STRUCTURE, 2022, 1253
  • [47] 3D-QSAR and molecular docking studies of amino-pyrimidine derivatives as PknB inhibitors
    Damre, Mangesh V.
    Gangwal, Rahul P.
    Dhoke, Gaurao V.
    Lalit, Manisha
    Sharma, Dipna
    Khandelwal, Kanchan
    Sangamwar, Abhay T.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (02) : 354 - 364
  • [48] 3D-QSAR, Docking, and Molecular Dynamics Simulations Studies on Quinazoline Derivatives as PAK4 Inhibitors
    Chen, Xiao-Zhong
    Dai, Chen
    Shen, Yan
    Wang, Juan
    Hu, Yong
    Wang, Yuan-Qiang
    Lin, Zhi-Hua
    LETTERS IN DRUG DESIGN & DISCOVERY, 2021, 18 (11) : 1025 - 1038
  • [49] Prediction of Binding Affinities for Hydroxamic Acid Derivatives as Urease Inhibitors by Molecular Docking and 3D-QSAR Studies
    ul-Haq, Zaheer
    Wadood, Abdul
    LETTERS IN DRUG DESIGN & DISCOVERY, 2009, 6 (02) : 93 - 100
  • [50] Molecular Docking and 3D-QSAR Studies on 7-azaindole Derivatives as Inhibitors of Trk A: A Strategic Design in Novel Anticancer Agents
    Aouidate, Adnane
    Ghaleb, Adib
    Ghamali, Mounir
    Chtita, Samir
    Ousaa, Abdellah
    Choukrad, M'barek
    Sbai, Abdelouahid
    Bouachrine, Mohammed
    Lakhlifi, Tahar
    LETTERS IN DRUG DESIGN & DISCOVERY, 2018, 15 (11) : 1211 - 1223