Computer-aided molecular design of highly potent HIV-1 RT inhibitors: 3D QSAR and molecular docking studies of efavirenz derivatives

被引:16
|
作者
Pungpo, P.
Saparpakorn, P.
Wolschann, P.
Hannongbua, S.
机构
[1] Ubonratchathani Univ, Fac Sci, Ubon Ratchathani 34190, Thailand
[2] Kasetsart Univ, Fac Sci, Bangkok 10900, Thailand
[3] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
关键词
3D-QSAR; CoMFA; CoMSIA; docking; efavirenz; NNRTIs;
D O I
10.1080/10629360600884520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ligand- and structure-based design approaches have been applied to an extended series of 74 efavirenz compounds effectively inhibiting wild type (WT) and mutant type (K103N) HIV-1 reverse transcriptase (RT). For ligand-based approach, three dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA), were performed. The starting geometry of efavirenz was obtained from X-ray crystallographic data. The efavirenz derivatives were constructed and fully optimized by ab-initio molecular orbital method at HF/3-21G level. Reliable QSAR models for high predictive abilities were developed. Regarding WT and K103N inhibitions, CoMFA models with r(cv)(2) = 0.651 and 0.678 and CoMSIA models with r(cv)(2) = 0.662 and 0.743 were derived, respectively. The interpretation obtained from the models highlights different structural requirements for inhibition of WT and K103N HIV-1 RT. To elucidate potential binding modes of efavirenz derivatives in the binding pocket of WT and K103N HIV-1 RT, structure-based approach based on computational docking studies of selected efavirenz compounds were performed by using GOLD and FlexX programs. The results derived from docking analysis give additional information and further probe the inhibitor-enzyme interactions. The correlation of the results obtained from 3D QSAR and docking models validate each other and lead to better understanding of the structural requirements for the activity. Therefore, these integrated results are informative to provide key features and a helpful guideline for novel compound design active against HIV-1 RT.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 50 条
  • [1] Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors
    Vijay M. Khedkar
    Premlata K. Ambre
    Jitender Verma
    Mushtaque S. Shaikh
    Raghuvir R. S. Pissurlenkar
    Evans C. Coutinho
    Journal of Molecular Modeling, 2010, 16 : 1251 - 1268
  • [2] Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors
    Khedkar, Vijay M.
    Ambre, Premlata K.
    Verma, Jitender
    Shaikh, Mushtaque S.
    Pissurlenkar, Raghuvir R. S.
    Coutinho, Evans C.
    JOURNAL OF MOLECULAR MODELING, 2010, 16 (07) : 1251 - 1268
  • [3] QSAR and docking studies of coumarin derivatives as potent HIV-1 integrase inhibitors
    Srivastav, V. K.
    Tiwari, M.
    ARABIAN JOURNAL OF CHEMISTRY, 2017, 10 : S1081 - S1094
  • [4] 3D-QSAR and Molecular Docking Studies of Flavonoid Derivatives as Potent Acetylcholinesterase Inhibitors
    Zhou, An
    Wu, Zeyu
    Hui, Ailing
    Wang, Bin
    Duan, Xianchun
    Wang, Haixiang
    Pan, Jian
    LETTERS IN DRUG DESIGN & DISCOVERY, 2015, 12 (10) : 837 - 843
  • [5] Application of 3D-QSAR, Pharmacophore, and Molecular Docking in the Molecular Design of Diarylpyrimidine Derivatives as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors
    Liu, Genyan
    Wang, Wenjie
    Wan, Youlan
    Ju, Xiulian
    Gu, Shuangxi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (05)
  • [6] 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors
    Durdagi, Serdar
    Mavromoustakos, Thomas
    Papadopoulos, Manthos G.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2008, 18 (23) : 6283 - 6289
  • [7] Generation of new leads as HIV-1 integrase inhibitors: 3D QSAR, docking and molecular dynamics simulation
    Vyas, Vivek K.
    Shah, Shreya
    Ghate, Manjunath
    MEDICINAL CHEMISTRY RESEARCH, 2017, 26 (03) : 532 - 550
  • [8] Generation of new leads as HIV-1 integrase inhibitors: 3D QSAR, docking and molecular dynamics simulation
    Vivek K. Vyas
    Shreya Shah
    Manjunath Ghate
    Medicinal Chemistry Research, 2017, 26 : 532 - 550
  • [9] 3D-QSAR and molecular docking studies on HIV protease inhibitors
    Tong, Jianbo
    Wu, Yingji
    Bai, Min
    Zhan, Pei
    JOURNAL OF MOLECULAR STRUCTURE, 2017, 1129 : 17 - 22
  • [10] The 3D-QSAR Study, Molecular Docking, and ADMET Analysis of Darunavir Derivatives of HIV-1 Protease Inhibitors
    Fang, Rui-Jing
    Zhang, Yan-Jun
    Wang, Wei-Xian
    Wu, Tian-Le
    Zhang, Shuai-Jun
    He, Yi-Yang
    Xiong, Fei
    Wang, Zhong-Hua
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (13) : 2590 - 2603