Suspended graphene arrays for gas sensing applications

被引:21
作者
Gupta, Rakesh K. [1 ]
Alqahtani, Faisal H. [1 ,2 ]
Dawood, Omar M. [1 ,3 ]
Carini, Marco [4 ]
Criado, Alejandro [4 ]
Prato, Maurizio [4 ,5 ,6 ,7 ]
Garlapati, Suresh K. [8 ]
Jones, Gareth [9 ]
Sexton, James [1 ]
Persaud, Krishna C. [10 ]
Dang, Caroline [11 ,12 ]
Monteverde, Umberto [1 ]
Missous, Mohamed [1 ]
Young, Robert J.
Boult, Stephen [11 ]
Dixon, Neil [13 ]
Majewski, Leszek [1 ]
Migliorato, Max A. [1 ]
机构
[1] Univ Manchester, Dept Elect & Elect Engn, D3a,Sackville St Bldg, Manchester M1 3WE, Lancs, England
[2] King Khalid Univ, Fac Sci, Dept Phys, Abha 62529, Saudi Arabia
[3] Univ Anbar, Coll Educ Pure Sci, Dept Phys, Anbar, Iraq
[4] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biomat CIC BiomaGUNE, Paseo Miramon 182, Donostia San Sebastian 20014, Spain
[5] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[6] Univ Trieste, Dept Chem & Pharmaceut Sci, Via Licio Giorgieri 1, I-34127 Trieste, Italy
[7] Univ Trieste, INSTM, UdR Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
[8] Univ Manchester, Dept Mat, Mills Bldg, Manchester, Lancs, England
[9] Univ Manchester, Ctr Innovat UMI3, Grafton St, Manchester M13 9XX, Lancs, England
[10] Univ Manchester, Sch Mat, Dept Chem Engn & Analyt Sci, Manchester, Lancs, England
[11] Univ Manchester, Dept Earth & Environm Sci, Manchester, Lancs, England
[12] NASA, Ames Res Ctr, Moffett Field, CA USA
[13] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
suspended graphene; array sensor; gas sensor; formaldehyde detection; UV aided recovery; square membranes; circular membranes; RAMAN-SPECTROSCOPY; SENSOR ARRAYS; STRAIN; SENSITIVITY; FABRICATION; MEMBRANE;
D O I
10.1088/2053-1583/abcf11
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Suspended graphene (SUS-G) has long been hailed as a potential 'true graphene' as its conductive properties are much closer to those of theoretical graphene. However, substantial issues with yield during any device fabrication process have severely limited its use to date. We report the successful fabrication of a fully operational prototype of a miniature 9 mm(2) suspended graphene array sensor chip, incorporating 64 graphene sensor devices, each comprising of 180 SUS-G membranes with ever reported 56% fully intact graphene membranes for sensitive and selective gas sensing applications. While a bare sensor chip can operate as a sensitive gas sensor for a variety of gasses such as ammonia, nitrogen dioxide and carbon monoxide, down to ppm/ppb concentrations, a tetrafluorohydroquinone functionalized sensor acquires specificity to formaldehyde gas molecules with limited cross-sensitivity for ethanol, toluene and humidity. Unlike an equivalent device with fully supported functionalized graphene sensor, a functionalized SUS-G sensor can be furthermore reset to its baseline by using UV assisted desorption instead of substrate heating. The low power UV irradiation does not show severe damage to the SUS-G structures and loss of functional probes for the formaldehyde gas-a previously unreported feature. A resettable and selective formaldehyde gas sensor array with mass manufacturability, low power consumption and overall dimensions down to 1 mm(2), would represent a significant technological step forward in the development of an electronic nose, for the simultaneous detection of multiple-target gases, with potential for integration in portable electronic devices and the internet of things.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] T-Shape Suspended Silicon Nitride Ring Resonator for Optical Sensing Applications
    Feng, Jijun
    Akimoto, Ryoichi
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (15) : 1601 - 1604
  • [32] Capacitive pressure sensing with suspended graphene-polymer heterostructure membranes
    Berger, Christian
    Phillips, Rory
    Centeno, Alba
    Zurutuza, Amaia
    Vijayaraghavan, Aravind
    NANOSCALE, 2017, 9 (44) : 17439 - 17449
  • [33] Suspended Silicon Waveguide for Mid-Infrared Gas Sensing
    El Shamy, Raghi S.
    Swillam, Mohamed A.
    Khalil, Diaa A.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXIV, 2020, 11283
  • [34] Graphene gas sensing using a non-contact microwave method
    Black, N. C. G.
    Liu, C. G.
    Pearce, R.
    Li, B.
    Maier, S. A.
    Cohen, L. F.
    Gallop, J. C.
    Hao, L.
    NANOTECHNOLOGY, 2017, 28 (39)
  • [35] Dynamic modulation of the Fermi energy in suspended graphene backgated devices
    Dawood, Omar M.
    Gupta, Rakesh Kumar
    Monteverde, Umberto
    Alqahtani, Faisal H.
    Kim, Hong-Yeol
    Sexton, James
    Young, Robert J.
    Missous, Mohamed
    Migliorato, Max A.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2019, 20 (01) : 568 - 579
  • [36] Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor
    Hosseingholipourasl, Ali
    Ariffin, Sharifah Hafizah Syed
    Al-Otaibi, Yasser D.
    Akbari, Elnaz
    Hamid, Fatimah K. H.
    Koloor, S. S. R.
    Petru, Michal
    SENSORS, 2020, 20 (05)
  • [37] Spatially Resolved Optical Sensing Using Graphene Nanodisk Arrays
    Zundel, Lauren
    Manjavacas, Alejandro
    ACS PHOTONICS, 2017, 4 (07): : 1831 - 1838
  • [38] High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications
    Belmonte, JC
    Puigcorbé, J
    Arbiol, J
    Vilà, A
    Morante, JR
    Sabaté, N
    Gràcia, I
    Cané, C
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (02): : 826 - 835
  • [39] Gas sensing applications of the inverse spinel zinc tin oxide
    Saeedabad, S. Hemmatzadeh
    Baratto, C.
    Rigoni, F.
    Rozati, S. M.
    Sberveglieri, G.
    Vojisavljevic, K.
    Malic, B.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 71 : 461 - 469
  • [40] Amorphous molybdenum trioxide thin films for gas sensing applications
    Ali, H. M.
    Shokr, E. Kh.
    Taya, Y. A.
    Elkot, Sh. A.
    Hasaneen, M. F.
    Mohamed, W. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 335