Combinatorial Optimization Over Two Random Point Sets

被引:32
作者
Barthe, Franck [1 ]
Bordenave, Charles [1 ]
机构
[1] Univ Toulouse 3, Inst Math, CNRS, UMR 5219, F-31062 Toulouse 09, France
来源
SEMINAIRE DE PROBABILITES XLV | 2013年 / 2078卷
关键词
Combinatorial optimization; Geometric probability; Minimal matching;
D O I
10.1007/978-3-319-00321-4_19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, Y) be a pair of random point sets in Rd of equal cardinal obtained by sampling independently 2n points from a common probability distribution mu. In this paper, we are interested by functions L of (X,Y) which appear in combinatorial optimization. Typical examples include the minimal length of a matching of X and Y, the length of a traveling salesperson tour constrained to alternate between points of each set, or the minimal length of a connected bipartite r-regular graph with vertex set (X, Y). As the size n of the point sets goes to infinity, we give sufficient conditions on the function L and the probability measure mu which guarantee the convergence of L (X, Y) under a suitable scaling. In the case of the minimal length matching, we extend results of Dobric and Yukich, and Boutet de Monvel and Martin.
引用
收藏
页码:483 / 535
页数:53
相关论文
共 19 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]  
[Anonymous], 1993, OXFORD STUDIES PROBA
[3]  
[Anonymous], 1998, Lecture Notes in Mathematics
[4]  
[Anonymous], 1997, CBMS NSF REGIONAL C
[5]  
[Anonymous], 1998, PROB APPL S, DOI 10.1007/b98894
[6]  
[Anonymous], 1998, COMBINATORIAL OPTIMI
[7]  
Beardwood Jillian, 1959, Mathematical Proceedings of the Cambridge Philosophical Society, V55, P299, DOI [DOI 10.1017/S0305004100034095, 10.1017/S0305004100034095]
[8]   Almost sure convergence of the minimum bipartite matching functional in Euclidean space [J].
De Monvel, JHB ;
Martin, OC .
COMBINATORICA, 2002, 22 (04) :523-530
[9]   ASYMPTOTICS FOR TRANSPORTATION COST IN HIGH DIMENSIONS [J].
DOBRIC, V ;
YUKICH, JE .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :97-118
[10]   Geometric properties of Poisson matchings [J].
Holroyd, Alexander E. .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) :511-527