The Structural Stability of Maps with Heteroclinic Repellers

被引:6
作者
Chen, Yuanlong [1 ]
Li, Liangliang [2 ]
Wu, Xiaoying [1 ]
Wang, Feng [1 ]
机构
[1] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Peoples R China
[2] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Guangzhou 510275, Guangdong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 14期
基金
中国国家自然科学基金;
关键词
Heteroclinic repeller; structural stability; chaos; positive topological entropy; SNAP-BACK REPELLERS; BOUNDARY-CONDITION; CHAOTIC VIBRATION; PERTURBATIONS; PERSISTENCE; VAN;
D O I
10.1142/S0218127420502077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note is concerned with the effect of small C-1 perturbations on a discrete dynamical system (X,f), which has heteroclinic repellers. The question to be addressed is whether such perturbed system (X,g) has heteroclinic repellers. It will be shown that if parallel to f - g parallel to(C1) is small enough, (X,g) has heteroclinic repellers, which implies that it is chaotic in the sense of Devaney. In addition, if X = R-n and (X,f) has regular nondegenerate heteroclinic repellers, then (X,g) has regular nondegenerate heteroclinic repellers, where g is a small Lipschitz perturbation of f. Three examples are presented to validate the theoretical conclusions.
引用
收藏
页数:10
相关论文
共 27 条
[21]   Discrete chaos in Banach spaces [J].
Shi, YM ;
Chen, GR .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (02) :222-238
[22]   Chaos of discrete dynamical systems in complete metric spaces [J].
Shi, YM ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :555-571
[23]   Long-term structural performance monitoring system for the Shanghai Tower [J].
Su J.-Z. ;
Xia Y. ;
Chen L. ;
Zhao X. ;
Zhang Q.-L. ;
Xu Y.-L. ;
Ding J.-M. ;
Xiong H.-B. ;
Ma R.-J. ;
Lv X.-L. ;
Chen A.-R. .
Xia, Y. (ceyxia@polyu.edu.hk), 2013, Springer Verlag (03) :49-61
[24]  
Wu X., 2016, INT J BIFURCAT CHAOS, V26
[25]   Structure stability of maps with snap-back repellers in Banach spaces [J].
Zhang, Lijuan ;
Shi, Yuming ;
Zhang, Xu ;
Liang, Wei .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (11) :1817-1842
[26]   COUPLED-EXPANDING MAPS UNDER SMALL PERTURBATIONS [J].
Zhang, Xu ;
Shi, Yuming ;
Chen, Guanrong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) :1291-1307
[27]  
Zhang Z., 2010, Principles of Differentiable Dynamical Systems