Positive solution for singular boundary value problems

被引:11
作者
Wong, FH [1 ]
Lian, WC [1 ]
机构
[1] NATL CENT UNIV,DEPT MATH,CHUNGLI 32054,TAIWAN
关键词
boundary value problems; positive solution; locally Lipschitz continuous;
D O I
10.1016/0898-1221(96)00175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sufficient condition for the existence of positive solutions of the nonlinear boundary value problem u ''(t) + f(t, u(t)) = 0, 0 < t < 1, u'(0) = u(1) = 0 is constructed, where f : [0, 1) x (0, infinity) --> (0, infinity) is continuous, f(t, u) is locally Lipschitz continuous, and f(t, u)/u is strictly decreasing in u > 0 for each t is an element of (0, 1).
引用
收藏
页码:41 / 49
页数:9
相关论文
共 23 条
[1]   ABEL-GONTSCHAROFF BOUNDARY-VALUE-PROBLEMS [J].
AGARWAL, RP ;
SHENG, Q ;
WONG, PJY .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (07) :37-55
[2]  
AGARWAL RP, IN PRESS J DIFF EQUS
[3]  
AGARWAL RP, IN PRESS APPL ANAL
[4]  
AGARWAL RP, IN PRESS RENDICONTI
[5]   NONLINEAR ELLIPTIC PROBLEMS IN ANNULAR DOMAINS [J].
BANDLE, C ;
COFFMAN, CV ;
MARCUS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (03) :322-345
[6]   EXISTENCE AND UNIQUENESS RESULTS FOR SEMI-LINEAR DIRICHLET PROBLEMS IN ANNULI [J].
COFFMAN, CV ;
MARCUS, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (04) :293-307
[7]  
Dang H., 1994, Differ. Integral Equ, V7, P747
[8]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[10]  
Granas A., 1980, ROCKY MT J MATH, V10, P35, DOI [10.1216/RMJ-1980-10-1-35, DOI 10.1216/RMJ-1980-10-1-35]