Fixed-time synchronization of multi-links complex network

被引:25
作者
Zhao, Hui [1 ]
Li, Lixiang [2 ]
Peng, Haipeng [2 ]
Xiao, Jinghua [1 ]
Yang, Yixian [2 ,3 ]
Zheng, Mingwen [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] State Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2017年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Fixed-time control theory; finite-time control theory; multi-links complex network; parameters identification; FINITE-TIME; DYNAMICAL NETWORKS; ADAPTIVE SYNCHRONIZATION; IDENTIFICATION; STABILIZATION; STABILITY;
D O I
10.1142/S0217984917500087
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the paper, the fixed-time and finite-time synchronizations of multi-links complex network are investigated. Compared with finite-time synchronization, the settling time of fixed-time synchronization is independent of initial conditions. For uncertain multi-links complex networks, this paper further analyzes synchronization mechanism and unknown parameters based on the drive-response concept and finite-time stability theory. Novel synchronization control criteria and the result of parameters identification are, respectively, obtained in a finite time by utilizing Lyapunov function and linear matrix inequality (LMI). Besides, we give other two versions of finite-time synchronization and parameters identification for uncertain multi-links complex network with impulsive control input. Finally, numerical examples are given to illustrate the effectiveness of our theoretical results.
引用
收藏
页数:24
相关论文
共 32 条
[1]   Robust projective lag synchronization in drive-response dynamical networks via adaptive control [J].
Al-mahbashi, G. ;
Noorani, M. S. Md ;
Bakar, S. A. ;
Al-sawalha, M. M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (01) :51-64
[2]  
[Anonymous], SCI REP
[3]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[4]   Finite-time stabilization control of memristor-based neural networks [J].
Cai, Zuowei ;
Huang, Lihong ;
Zhu, Mingxun ;
Wang, Dongshu .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2016, 20 :37-54
[5]  
Dorato P., 1961, Proc. IRE Internat. Conv. Rec. Part 4, P83
[6]   Finite-Time Stabilization and Optimal Feedback Control [J].
Haddad, Wassim M. ;
L'Afflitto, Andrea .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (04) :1069-1074
[7]  
Levant A, 2013, IEEE DECIS CONTR P, P4260, DOI 10.1109/CDC.2013.6760544
[8]  
Liu X., 2015, PHYSICS
[9]  
Liu X., 2015, IEEE T NEUR NET LEAR, V27, P471
[10]   Finite-time synchronization of neutral complex networks with Markovian switching based on pinning controller [J].
Liu, Xinghua ;
Yu, Xinghuo ;
Xi, Hongsheng .
NEUROCOMPUTING, 2015, 153 :148-158