Review of intraoperative optical coherence tomography: technology and applications [Invited]

被引:121
作者
Carrasco-Zevallos, Oscar M. [1 ]
Viehland, Christian [1 ]
Keller, Brenton [1 ]
Draelos, Mark [1 ]
Kuo, Anthony N. [2 ]
Toth, Cynthia A. [1 ,2 ]
Izatt, Joseph A. [1 ,2 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Ctr Eye, Dept Ophthalmol, Durham, NC 27710 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ANTERIOR LAMELLAR KERATOPLASTY; MICROSCOPE-INTEGRATED OCT; BREAST-CONSERVING SURGERY; GRAPHICS PROCESSING UNIT; HUMAN OPHTHALMIC SURGERY; MEMS SCANNING CATHETER; HEADS-UP DISPLAY; SWEPT-SOURCE; IN-VIVO; MACULAR HOLE;
D O I
10.1364/BOE.8.001607
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
During microsurgery, en face imaging of the surgical field through the operating microscope limits the surgeon's depth perception and visualization of instruments and subsurface anatomy. Surgical procedures outside microsurgery, such as breast tumor resections, may also benefit from visualization of the sub-surface tissue structures. The widespread clinical adoption of optical coherence tomography (OCT) in ophthalmology and its growing prominence in other fields, such as cancer imaging, has motivated the development of intraoperative OCT for real-time tomographic visualization of surgical interventions. This article reviews key technological developments in intraoperative OCT and their applications in human surgery. We focus on handheld OCT probes, microscope-integrated OCT systems, and OCT-guided laser treatment platforms designed for intraoperative use. Moreover, we discuss intraoperative OCT adjuncts and processing techniques currently under development to optimize the surgical feedback derivable from OCT data. Lastly, we survey salient clinical studies of intraoperative OCT for human surgery. (C) 2017 Optical Society of America
引用
收藏
页码:1607 / 1637
页数:31
相关论文
共 205 条
[1]  
Aaker Grant D, 2011, Ophthalmic Surg Lasers Imaging, V42 Suppl, pS116, DOI 10.3928/15428877-20110627-11
[2]   Femtosecond laser-assisted cataract surgery versus standard phacoemulsificati on cataract surgery: Outcomes and safety in more than 4000 cases at a single center [J].
Abell, Robin G. ;
Darian-Smith, Erica ;
Kan, Jeffrey B. ;
Allen, Penelope L. ;
Ewe, Shaun Y. P. ;
Vote, Brendan J. .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2015, 41 (01) :47-52
[3]   Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging [J].
Aguirre, Aaron D. ;
Herz, Paul R. ;
Chen, Yu ;
Fujimoto, James G. ;
Piyawattanametha, Wibool ;
Fan, Li ;
Wu, Ming C. .
OPTICS EXPRESS, 2007, 15 (05) :2445-2453
[4]  
Akiba J, 2000, OPHTHALMIC SURG LAS, V31, P240
[5]  
[Anonymous], 2015, SCI TRANSL MED
[6]   Development of a Fiber-Optic Optical Coherence Tomography Probe for Intraocular Use [J].
Asami, Tetsu ;
Terasaki, Hiroko ;
Ito, Yasuki ;
Sugita, Tadasu ;
Kaneko, Hiroki ;
Nishiyama, Junpei ;
Namiki, Hajime ;
Kobayashi, Masahiko ;
Nishizawa, Norihiko .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (09) :OCT568-OCT574
[7]   Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography [J].
Assayag, Osnath ;
Grieve, Kate ;
Devaux, Bertrand ;
Harms, Fabrice ;
Pallud, Johan ;
Chretien, Fabrice ;
Boccara, Claude ;
Varlet, Pascale .
NEUROIMAGE-CLINICAL, 2013, 2 :549-557
[8]   Intraoperative Optical Coherence Tomography for Enhanced Depth Visualization in Deep Anterior Lamellar Keratoplasty From the PIONEER Study [J].
Au, John ;
Goshe, Jeffrey ;
Dupps, William J., Jr. ;
Srivastava, Sunil K. ;
Ehlers, Justis P. .
CORNEA, 2015, 34 (09) :1039-1043
[9]  
Balicki M, 2009, LECT NOTES COMPUT SC, V5761, P108, DOI 10.1007/978-3-642-04268-3_14
[10]  
Behrens A, 2008, J REFRACT SURG, V24, P46, DOI 10.3928/1081597X-20080101-07