Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity

被引:79
作者
Ibrahim, Slim
Majdoub, Mohamed
Masmoudi, Nader
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
[2] Courant Inst, New York, NY 10012 USA
[3] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
D O I
10.1002/cpa.20127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of global solutions for a Cauchy problem associated to a semilinear Klein-Gordon equation in two space dimensions. Our result is based on an interpolation estimate with a sharp constant obtained by a standard variational method. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1639 / 1658
页数:20
相关论文
共 33 条
[11]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[12]  
GINIBRE J, 1994, ADV STUD PURE MATH, V23, P83
[13]   REGULARITY AND ASYMPTOTIC-BEHAVIOR OF THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
ANNALS OF MATHEMATICS, 1990, 132 (03) :485-509
[14]   REGULARITY FOR THE WAVE-EQUATION WITH A CRITICAL NONLINEARITY [J].
GRILLAKIS, MG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (06) :749-774
[15]  
Ibrahim S, 2003, B SOC MATH FR, V131, P1
[16]  
IBRAHIM S, IN PRESS P AM MATH S
[17]  
Kapitanski L., 1990, LENINGRAD MATH J, V1, P693
[18]  
Kapitanski L.V., 1992, J SOVIET MATH, V62, P2746
[19]  
Kapitanski L, 1994, MATH RES LETT, V1, P211
[20]  
KAPITANSKII LV, 1987, ZAP NAUCHN SEM LENIN, V163