Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity

被引:79
作者
Ibrahim, Slim
Majdoub, Mohamed
Masmoudi, Nader
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
[2] Courant Inst, New York, NY 10012 USA
[3] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
D O I
10.1002/cpa.20127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of global solutions for a Cauchy problem associated to a semilinear Klein-Gordon equation in two space dimensions. Our result is based on an interpolation estimate with a sharp constant obtained by a standard variational method. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1639 / 1658
页数:20
相关论文
共 33 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Decay estimates for the critical semilinear wave equation [J].
Bahouri, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06) :783-789
[4]  
Baraket AA, 2004, BOLL UNIONE MAT ITAL, V7B, P1
[5]  
Burq N, 2002, MATH RES LETT, V9, P323
[6]  
CHRIST M, 2003, ILL POSEDNESS NONLIN
[7]   Oscillations and concentration effects in semilinear dispersive wave equations [J].
Gerard, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :60-98
[8]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[10]   SCATTERING-THEORY IN THE ENERGY SPACE FOR A CLASS OF NON-LINEAR WAVE-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :535-573